Research Bulletin No. 5 and the Republic of Rum Letters

Lately there is growing interest in the work of, Puerto Rican agro chemist, Rafael Arroyo, and many are discovering my hosted collection of his lost works from a few years ago. Few realized Arroyo wrote so many journal articles because he is best known for an elusive book called Studies On Rum: Research Bulletin No. 5. Not many copies still exist because it was printed on such cheap paper that all copies are literally crumbling.

I have a wonderful scanning of this work, but I acquired it well after I started hosting the journal articles. By then there were many thousands of reads and downloads, but near no comments. This blog has wild readership stats for being so niche, but generates very little dialogue. Open hosting, a part of open culture has not exactly led to the open community I hoped for which is something that older generations of distillers enjoyed.

I made it known in that post I had a good scanning and after many months someone actually took the time to write me an email, tell me about their project, and ask about my scanning. Of course I shared it with them. But I told them: Only share it if someone asks, but of course share it! Do not volunteer it. Offer to discuss it. Create a Republic of Letters and not a society of lurkers. Pass on those same rules. In two years I’ve only gotten 15 requests, but from around the world. We’ve had great conversations on successes, failures, and ideas to try. Very cool things are happening, keep an eye on South Africa.

A notable recommendation to participate in the Republic of Rum Letters: write emails and comment directly on blogs. Avoid facebook and twitter because they are too ephemeral and all the great discussions get lost (FB is the biggest offender). Ask questions. Avoid hero worship. Contact very old writers. Recognize that we’ve all barely scratched the surface and truly know very little.

I don’t aim to control the book and it is pretty much redundant with all the journal articles, but the approach has started tons of great dialogue and I’ve learned a lot. I’ve read the book a few times and even wrote multiple articles on Arroyo and specific topics within Studies on Rum. The best passages, the stuff that would amuse and excite the rum drinker are all fully quoted in these articles.

The Prior Patents of Rafael Arroyo
Rum Comparatively: Understanding Anything Goes
Rum, Mitogenic Radiation & The Bio-photon
Cape Verde and Sugarcane Juice Rum Categories
Team Pombe and the Yeast Olympiad
Rum, Osmotolerance and the Lash
Aroma Breakage and Rum Design
Ageing, Accelerated Ageing, & Élevage ==> Lies, Damn Lies & Statistics
Arroyo’s Oidium

I don’t think a single article above has even gotten a comment.

I’ve put Arroyo down for a while, but I have been concepting a distillery analysis laboratory based on his ideas plus everything I have read that came after. I aim to create an affordable, holistic, organoleptic, human centered analysis system for product design and eventual quality control that can generate actionable advice. There is no GC/MS. It aims to be more like a vinyl DJ; admired, marketable, and effective. Seductive, but non actionable technologies are ruled out. Fine winemakers perform tons of analysis but don’t get too advanced. They are human centered.

The system can also be integrated into brand marketing and story telling better than more technologically advanced methods. The budget is looking like $30K and it also encompasses my gin lab based on the original 1940’s Seagram’s botanical assay procedures I recovered.

I’m working on it.

Hubert Von Olbrich, Über rum completeist \m/(-.-)\m/

I have long been procrastinating a major lead on rum history given by Hubert Von Olbrich in his contribution to the 1975 rum symposium.

Olbrich authored a very large bibliography of 300 years of rum thought, but very curiously he mentions a reference from 1936 regarding Percival Greig that he doesn’t list in his bibliography. Well, I’ve finally tracked down Olbrich’s text, Geschitche der Melasse, from 1970 and found that missing citation. I even digitized Olbrich’s section on rum and hopefully some translators will appear to help the cause.

Anonymous.: “Die Fabrikation des Jamaika-Rums und des Batavia-Arraks.-Ein über die wichtigsten Originalarbeiten, besonders englischer und holländischer Forscher”, Deutsche Destillateur-Zeitung 57(1936) 114, 123-124, 145-146, 159, 182-183, 205-206.

Percival Greig left Jamaica after positively identifying the fission yeast, schizosaccharomyces Pombe, as being responsible for the unique character of Jamaican rums. He went on to start his own distillery, but it is not known where he went. The citation may spell it out or offer more clues.

Hubert Von Olbrich is a unique character and very significant. Besides being a globe trotting super consultant sugar technologist, he was also a bibliophile and historian. Very much like Maynard Amerine, Olbrich was a linguist and capable of digesting the different languages that go into telling the history of sugar cane and/or our interest, rum.

He was convinced that nothing notable happened in the development of rum technology between Percival Greig and Raphael Arroyo. I would argue that isn’t completely true, but Olbrich’s bibliographies are missing one important scientist, who I won’t name for selfish reasons, that Arroyo built upon.

I don’t speak German and I only gleaned a little bit by using google’s translator, but the chapter looks particularly interesting and may explain what Jamaica rum concentrates were all about and how they were used by Germany as blending stock, especially after WWII. The writing is also full of question marks and exclamation points so hopefully it freely dispenses aesthetic opinions of beauty.

The end of Olbrich’s text features a timeline that extends from basically the beginning of recorded history until 1970, the book’s publication. The time line is in German, but one curious thing is easy to pick out. Along the way, in 1893, he starts a countdown of Jamaican rum production. Olbrich lists how many distilleries there were and what they collectively produced.

1893    73,400 hl (hecto-liter)    148 distillereies
1901    58,200                               110
1912    40,000                               67
1922    62,400                              48
1936    43,500                               29
1948    134,700                             24
1957    70,000                               21

This was the path of consolidation. There was also a curious entry in 1934. Only that year did Puerto Rico begin rum production.

Scouring the bibliography, I can across a reference to H. Warner Allen’s wonderful Rum: The Englishman’s Spirit and was able to find this scanning of it. It is a spectacularly thoughtful history of rum and probably no one writing today has learned to convey their love of the subject quite like Allen.

 

 

F. I Scard, The Chemistry of Rum

The name F. I. Scard has come up before in a drab paper, Scientific Control of a Rum Distillery. That idea turned out to be slightly more exciting in our recent reframing of Bourbon where we saw that scientific control was something that was significantly aided by onsite excise officers which the West Indies didn’t seem to have in those days. Better control made the collecting of tax revenue much more predictable.

Scard returns with another short paper, The Chemistry of Rum, from 1920. There is some great language in there and some unique factoids.

What might be called the beneficient bacteria of rum, which cause the distinctive flavour, are the acetic acid organism, which produces acetic acid from the alcohol, and the butyric acid organism, which gives from the presence of organic matter peculiar to sugar cane molasses, butyric acid—the same body which gives the characteristic flavour to rancid butter.

We use that rancid butter factoid as common trivia these days, but I’ve never seen it stated that far back.

During distillation the acids mentioned above combine with the alcohol, forming what are known as “esters” or compound ether, and it is these esters which impart the flavour to rum and give it stimulating properties.

I highlight this because Scard mentions stimulating properties. I posited stimulating properties in rum back in my infamous Mezan XO spirits review that ended up with the Mezan XO challenge! Scard was writing before the wide recognition of rum oil as a congener category, to which I attribute the mysterious stimulation rather than esters. Does the logic of his language imply pharmacological stimulation, apart from ethanol, or am I grasping? We have only seen real rum re-enter the market recently so I suggest you drink more to make a better educated decision.

The object of adding sulphuric acid to wash is the produce a certain acidity, thus putting an obstacle in the way of the putrifactive bacteria, which feed on yeast cells, at the same time helping the development of the butyric ferment,  which requires an acid condition for its development. It is the ester formed from this acid which gives the “pineapple” flavour to Jamaica rum. Its presence is essential to all rums, as without this ester the spirit ceases to be rum.

A strong aesthetic pronouncement! Those are rare.

And here we go…

The reason why Jamaica rum contains so much of this body, and is consequentially so valuable, is as follows: The yeast which provides the fermentation in sugar-cane distilleries is derived from the cane itself. The ordinary variety consists of round cellular bodies which grow by budding—that is, one cell buds out from another. This variety, unfortunately, will not flourish when the acidity gets beyond a certain point. When this point is reached—and the production of acetic acid soon brings it about if the fermentation is slow—alcohol production ceases. But in Jamaica there is an especial yeast which will grow in a highly acid medium. Unlike the other yeast, it is rod-shaped, and multiplies by splitting up. The presence of this yeast, therefore, enables the fermentation to be prolonged, and substances such as bottoms, dunder, &c., to be used in the wash, which are favourable to the development of butyric acid.

Here we see the return of our especial hero, Schizosaccharomyces Pombe, which is still not widely recognized in contemporary rum connoisseurship. We don’t exactly know who is using it currently and who isn’t and who was and who stopped. The first person to bring a Pombe rum to the U.S. will have a lot of success. And I’d be happy to help them. There are ways to achieve great ends without a Pombe ferment, but they do not tell such an archaic story of questing Victorian geniuses. They will not be as dank, concentrated, or brick house powerful.

In this connection it may be remarked that the writer on one occasion added butyric ether (ester) to a puncheon of rum in Demerara, which was reported upon in Mincing-lane as “resembling Jamaica”.

There is a lot here besides the admission of fraud. First off, Scard is an island hopper which shows yet again how ideas and know how easily spread between the islands. Everyone was following everyone. Therefore the forces that created style were largely economics, risk tolerance, and responsibility (to process mountains of molasses or not). Mincing-lane was a market for rum and other articles from the West Indies. Lots of tasting descriptors were developed in these markets.

The cane-juice itself is an important factor. Different kinds of canes give a different quality of rum, due, partly, to the case itself and partly to variations in chemical treatment necessitated there in the sugar manufacture. Even the different conditions of the same variety of cane will affect the flavour of the rum. On one occasion some Demerara rum made from very rank Bourbon canes were reported upon as being “green and stalky.” There is therefore outside the ethers specified some bodies present in excessive proportions which come down from the cane itself.

Scard here is arriving at a notion of proto-terroir. He isn’t exactly celebrating variation, but he is noting that variations exist. I’m a little confused by the “rank” canes. These could be moldy rum canes which were prized or be something else. Distilling them could also have been an experiment, and if they were fermented and distilled as a fresh juice rum, they may have had that character on account of not being centrifuged like the fresh juice rhums we know of today.

His closing remarks are nice:

Another agent in flavour is the nature of the still.

Australian Rum Oil and reisling TDN?

[By the end of the post, connections start to be made that I didn’t have a good enough memory to make from the beginning. The existence of this paper was a tip from a particularly smart reader. The punchline may be that components of the mythic rum oil may come from at least two channels. The first is the splitting of glycocides by the enzymatic activity of yeast while the second may be from carotenoids present in the cane itself. Tons of work still needs to be done, but these are some good preliminary guesses of where to look. At the very least, they may point to realizing more terroir in rum, molasses based or otherwise.]

Here is a unique paper, Less Volatile alcohols Esters and Hydrocarbons in a Raw Australian Rum, 1975 (Bundaberg!), which may have a follow up if ILL can track it down. [The follow up is A new approach to the identification of flavour components in rum from the Australian Wine, Brewing, and Spirit Review, 1973. This brief paper was in the bibliography of the other and offers a great summary of what will follow.]

I read this after reading two different modern rum-GCMS papers which were kind of useless for the purpose of learning more about rum history or production. I’ve been aiming to highlight a unique thesis I found with some fantastic explanations of the evolution of chromatography, but I’m short on time and I think I may contact the author first to ask some questions.

In the paper, D.A. Allen reads two early (1966, 1970) rum-GCMS papers and wants to play along, but doesn’t have access to the same equipment. The authors used pentanes to extract congeners from very small samples of rums then analyzed them with GCMS to name volatile components. I’ve actually played with pentane extraction to produce artful creations, but that is another story for another day. Allen could not work with such small samples so he comes up with the novel idea of collecting fusel oil from the side stream of the Bundaberg production then toying with it. Allen’s idea is comparative to that studies that inspired it because most of the unique compounds everyone is looking for are less volatile. The paper ends a little bit abruptly, but he ends up finding the notorius reisling congeners TDN.

I’ll try to describe a little bit of the experiment, but what I should first note with disappointment is that Allen never organoleptically describes anything he is working on. Is he working with that peculiar, wonderful, desired rum oil or is this just low volatility junk? We never really find out here, but maybe we will in his other paper. The whole significance of this paper becomes the old fashioned extraction procedures he uses which may help the contemporary small scale fine producer. Another new possibility is that rum oil congeners may have appreciated in value enough (with our new found fine market) that it is now economically viable to harvest them from a formerly discarded fusel oil fraction. Maybe it is already done for the fragrance industry? Who knows.

Distillery oil, removed in litre quantities from the side of the still was shown to contain these compounds and can be considered as a concentrate of the higher boiling point flavour compounds of rum.

 

Fractional distillation of distillery oil produced « fusel oil » containing the higher alcohols (n-propanol, isobutanol, isoamyl alcohol and active amyl alcohol, BP to 132°C) and a residue termed « rum » oil containing compounds with a higher boiling point than isoamyl alcohol.  Only the analysis of the « rum » oil will be discussed.

Allen uses both a Lecky and Ewell still and a Bower and Cooke still to purify the fractions for analysis. He has citations for each still and it may be helpful to dig them up to see what they were like. A lot of this equipment is still very useful.

He has got an entire liter of rum oil and does not say how it smells. There are a lot of esters in the oil and they get hydrolyzed with sodium hydroxide to concentrate the remaining compounds. The hydrolysate gets fractionally distilled and the fractions analysed. Part of hydrolysate is alcohols that were liberated from the esters by the sodium hydroxide. Due to how the sample was separated from fusel oil, some compounds like acetals reported in rum oil by others may not have survived.

Allen goes on to perform continuous liquid-liquid extraction on multiple liter batches of raw rum. Its seems like he does five batches and winds up with 5 liters of pentane to distill from. The non volatile product is an oil and the volatile product is split into two fractions. The ethanol was in the first fraction and the second fraction was an oil-water azeotropic mixture. The oil was separated, dried with anhydrous calcium chloride and added to the water-free residue in the pot. It would be nice to know how they smell before he blended them together!

This oil gets redistilled in the same apparatus and separated into two fractions collected up to 132°C so everything is well over the boiling point of water. What isn’t clear is if pentane is used in this distillation. These days this distillation would be done under vacuum and a teflon coated spinning band distillation column would be used because holdup, or the clinging of liquid to the glass apparatus, starts to become significant. Descriptions of what is explicitly happening by now have become a little disjointed and I’m having trouble following the transitions.

This oil was redistilled in the same apparatus and separated into two fractions. The larger fraction, collected up to 132°C, contained the higher alcohols to isoamyl alcohol and was called fusel oil. The residue (100 mL) in the pot contained compounds with higher boiling point than 132°C and was called « rum » oil. After four more such distillations, the combined residue amounted to 500 mL.

If any of this smelled really good, wouldn’t he be likely to mention it? Wouldn’t he be likely to show it to a distiller and get some gears turning? Wouldn’t Bundaberg rum be less likely to be so lame?

In the next step, the specialized stills get some use which apparently feature vacuum and a series of 10mL sample were collected until the temperature hit a certain point. The pressure was dropped and more 10mL samples collected. This multi stage pressure drop to avoid decomposition may have been because the equipment was a little more primitive than what we commonly use today. All of the collected fractions see some spectroscopy to identify what they are.

The rum oil goes through some more hydrolysis with more sodium hydroxide with the products extracted into more pentane.

The paper seems to get cut short after Allen identifies 1,1,6-trimethyl-1,2-dihydronaphthalene. Allen does not use the modern abbreviation of TDN, but this is a congener that is infamous in aged Reislings and is responsible for the petrol character which at the right levels is often prized. Allen drops a little bit of history on this compound but does not mention wine at all. I linked to this paper on TDN in the beginning, but here it is again if anyone wants a primer.

The entire work seems to be the basis of a masters thesis to which the next paper I’ve requested may add to.

I really don’t know what to make of the TDN discovery. Allen does torture his sample and we should remember that in continuous column distillates, this fraction is mostly discarded. Google searches for 1,1,6-trimethyl-1,2-dihydronaphthalene +rum yield nothing.

But, when you read the AWRI paper, TDN is noted as related to carotenoids and extra smart blog reader Matt Power brought them up recently (Matt actually inspired the tracking down of this paper after mentioning 1,1,6-trimethyl-1,2-dihydronaphthalene, but I did not immediately connect the dots):

Are components of rum oils microbiologically derived in these manners, rather than from the canes themselves? Carotenoid bio-decomposition is known to lead to a spectacular array of interesting chemicals

This comment come from the Arroyo’s Oidium post about ethyl tiglate and relates to my hypothesis that the peculiar character of rum oil comes from the splitting of glycosides by the enzymatic action of alt yeasts like Schizosacharomyces Pombe. Rum oil may be more complex and the product of more mechanisms.

Outlining the mechanisms may even unlock the potential for finding more terroir in rum from molasses. A rum can only tell us a story of a place if we learn to read it.

[It may be possible to take a modern GC-MS look at a heavy rum and try to categorize all the low volatility congeners found. This may give us a distribution of what channels they come from.]

Arroyo’s Oidium

In Arroyo’s 1945 Studies on Rum, he presents two different paths for symbiotic fermentations to produce full bodied rums. The first path uses a bacteria while the second path claims to use an Oidium (a mould), but recent research shows it may actually turn out to be a type of alt yeast.

Where did he get the idea anyhow? Arroyo has pretty much no bibliography other than the classic rum texts, but appears to cast a wide net and is well versed in emerging ideas in bio technology. He mentions finding this “mould” on the sap of a tree in a shade grown coffee plantation (shade grown coffee is really interesting). He does not say exactly what specific tree so it is hard to pin down because shade grown coffee plantations are known for spectacular diversity.

Besides, a mould of the Imperfecti group, Oidium Suaveolens, was also found very well adapted for the production of a special type of heavy rum.

Pages later he tell us more:

Another special type of heavy rum was produced during our studies and experiments. This time the raw material used was sugar cane juice. The yeast strain used was No. 764 and the auxiliary ferment was a member of the Fungi Imperfecti, Oidium Suaveolens. The Oidium was found and isolated by the writer from the sap of a tree much used in Puerto Rico for shading coffee plantations.

A study of this Oidium revealed that it would grow very fast in cane sugar juice media with the production of a thick film over the surface of the liquid. It was further discovered that it hardly touched the sugars in the medium, but that it was a good producer of esters and organic acids from the proteins of the raw material. A fragrant odour, very similar to that of ripe apples was the predominant aroma observed.

This Oidium was used as an auxiliary ferment for the production of heavy rums from sugar cane juice in two different ways: (a) a sterilized sugar cane juice mash of from 12.0 to 15.0 per cent total sugars was inoculated firstly with the Oidium culture. After the Oidium film was formed on the surface of the medium it was allowed to act up it for a period that could vary between 24 and 72 hours or more if desired. Then the mash was inoculated with an active footing of yeast No. 764, and the fermentation was carried to completion. (b) In the second method the yeast was allowed to operate alone in the substrate, and towards the finishing of the alcoholic fermentation the Oidium culture was inoculated. The Oidium fermentation was allowed to act then for variable number of hours, as desired.

Both methods worked satisfactorily in the creation of a new variety of heavy rum out of sugar cane juice mashes; but the rums obtained differed somewhat in each case, those produced by method (a) being of intenser taste and higher aromatic tone.

Many databases exist like the Global Biodiversity Information Facility that have listings for the organism, but they contain no spelled out history of discovery that may elude to where Arroyo got the idea (A Russian database points us to Geotrichum Frangrans which can be purchased here from the American Type Culture Collection ATCC). Arroyo did name the organism correctly as Suaveolens, and calling it an Oidium may point to the Russian biologist Krzemecki who possibly discovered it in 1913 based on language included in the GBIF entry. Arroyo may have also been hip to the organism by reading the mycologist Christine Marie Berkhout. Or maybe Arroyo never read her 1923 doctoral thesis that (quoting wikipedia) was later described as marking “the beginning of the rational systematics of the anascosporogenous yeasts” (I’m way out of my depth, but trying to bridge the gap between Arroyo’s mould and the recent researcher’s recategorization as yeast. The difference between a mold and a yeast is that molds grow with multi celled hyphae while yeast’s are single celled).

We are building up to some links to great modern research papers, but we should pause for a moment. The whole point of this exercise is to (a) celebrate how fucking cool Arroyo was, (b) help modern rum writers who may talk to producers and find evidence of these techniques used in a production, (c) help new producers jump off on this, and lastly (d) celebrate the contemporary researchers who will help us bring more of Arroyo back to life and create new exciting styles of rum.

Contemporary research on this organism and my realization that Arroyo may have been incorrect about it being an Oidium are lead by Thomas Petit and Eric Grondin working on the island of Reunion off the coast of Madagascar.

This brief info graphic style paper by Petit mentions participation in a European COST (cooperation in science & technology) bioflavour project. After scouting yeasts, Suaveolens, came up as their most significant flavor producer, specifically producing the valuable ester, ethyl tiglate (a known semio-chemical #pheramone).

To back track a bit, from an old text that summarizes abstracts, we can glean a little bit of the interest from 1923.

A study of Ester-Forming Yeasts.
Ulrich Weber, Biochem. Ztshr., Berlin 129:208, April 19, 1922.
Experiments are described that sought to determine the conditions under which the formation of fragrant esters takes place in some lower fungi. The question was dealt with by physiologic experimental methods. There were employed Willia saturnus Klöcker, Oïdium suaveolens Krzemecki and Siachsia suaveolens Linder. These organisms were raised in pure cultures in nutrient glycerin and mannite solutions under different conditions.

Results showed: In the observed yeasts and imperfecti fungi the ester odor typical for normal cases is not developed under all conditions. Cases occur in which, in spite of the most abundant development, no ester formation takes place, as in the case of growth in a carbon dioxide atmosphere. Esters are formed only when the simultaneous fermentation of carbohydrates assumes the role of sugar fermentation and liberates the energy requisite for the decomposition of albumin. Addition of alcohol enables a qualitative alteration of the ester odor to be attained. The employment of different nitrogenous nutrient media achieves an alteration of the odor only when other amino-acids are thereby presented simultaneously. Following addition of leucin a distinct odor of amylester is perceived. The ester odor of the species here investigated, which is always observable under normal conditions, is therefore capable of being influenced experimentally both qualitatively and quantitatively, as it is possible to alter both the character of the odor and also to prevent its occurrence in spite of the best development of the fungus.

The Yeast, A Taxonomic Study has some useful information on understanding what exactly the Saprochaete of Saprochaete Suaveolens entails.

Swedish Wikipedia provides a great bibliography.

And finally we come to a few spectacular modern research papers:

2016 Retrospective

Being December, it is time for the year end retrospective. Like usual, I felt like I didn’t accomplish much, but I did write about 20 posts with some containing distilled spirits’ most significant historic discoveries for the year (examining Arroyo) and others containing distilled spirits’ most progressive ideas (congeners derived from glycosides).

I have put a lot of beverage work on hold to become a design world darling and start the Houghton Street Foundry (IG: @houghtonstfoundry) which makes exquisite door hardware and offers architectural machining services. I have ghost written a few products for small distilleries with one being the hottest off premise specialty product in New England, though I actually think I designed it last calendar year. My beverage pace has slowed down, but I’m still holding significant technique and history secrets from the industry (to punish you all!).

The year started with Rum Comparatively: Understanding Anything Goes and explains how production compares to other spirits categories and why rum is the most progressive spirit with unique production templates that other categories do not use.

Aggressive collecting led me to Excise Anecdotes from Arrack Country which tells some of the most breath taking (and heart breaking) distilling stories ever recorded. It also ends with a beautiful discovery and meditation on terroir.

There is a ton of WTF? in Rum, Mitogenic Radiation & The Bio-photon. Brilliant Science writer, Adam Rogers, was cool enough to spend time weighing in so I had a lot of fun with the post. It does show that Rafael Arroyo was a far out thinker with an ear to the ground and yet again reinforces the idea of rum as the most progressive spirit. Nearly a century of science later not much is clarified.

This was particularly important to me because I’ve long been a champion of the rums of Cape Verde. In Cape Verde and Sugar Cane Juice Rum Categories I apply explanations from Arroyo to my favorite distilling tradition and explain the origins of their distinct aromas. There are so many supposed rum experts and they are still avoiding Cape Verde and the island of Madeira. Berry’s or Plantations rums, where you at? I’ll connect you to Cape Verde’s most brilliant distillery.

Here I describe my plan for discovering a new generation of champion rum yeasts: Team Pombe and the Yeast Olympiad. So far I haven’t been able to get it off the ground because of a lack of interest from the small distilleries in my circle (and the very expensive process). I will likely finance and execute the ideas by myself and I’m not afraid if it takes quick a few years. No one else seems to be too interested in this territory.

Rum, Osmotolerance and the Lash was so much more than a cute title and looks at forces that shape microbial communities, especially when trying to cultivate a dominant Pombe fermentation.

I had heard murmers of these ideas so long ago from Ed Hamilton so I decided to tackle them in Aroma Breakage and Rum Design. Arroyo as usual was on top of everything. Some new producers like Maggie Campbell of Privateer are known to be very much hip to this and weave the ideas in production.

Ageing, Accelerated Ageing, & Élevage ==> Lies, Damn Lies & Statistics This was my look at Arroyo’s progressive musing on the aging topic. I think this was before I read UC Davis great, Vernon Singleton’s, legendary paper which I probably should have given its own post (2017!)

Narrative of the 1975 Rum Symposium

Say it with me:
Rum is the most progressive spirits category.
Rum has the most researched spirits production.
There is nothing finer than rum as we make it.

There is so much good stuff in the symposium.

I had never done a spirits review before and of course I did it on my own terms. This post, Spirits Review: Mezan XO Jamaica Rum, also ends up with a challenge of drinking 10 ounces in one sitting to test a theory many are anecdotally validating. I also drop one of the most progressive ideas in all distilling and introduce a new congener category. Its not my fault if people cannot keep up.

IMG_7046

Before I left to run a popup in Province Town this summer, I introduced For Sale: Large Bottle Bottler. This tool is particularly awesome but not for everyone and I don’t push it. Some bars are killing it with my bottlers and I am in some of the world’s top programs while other notable programs cannot assemble a team that can handle the tasks. A lot of a sales go to winemakers doing research projects for their own product development. I owe you all a new post on kegging to show you’ve all been doing it so so wrong.

In the frustration of the election and inspired by blog hero George Lakoff, I penned Public foundations for Private Spirits Companies. The post is a meditation on how private companies get built on a foundation of public research and how we are starting to forget that. A new generation of distilleries is popping up that often flounders with the technical aspects of product development because they do not seek out any of the amazing research that came before them. Most distillers are in disbelief the research exists when I introduce it to them. This rickety blog is the largest source of advanced educational material for the new American distilling industry which is approaching a billion dollars in revenue and quite a few hundred million in investment.

14218249_1184581444895478_1934299890_n

Here I introduce the Alaska Ice Crusher and describe a stunning restored version produced by a new friend. I’ve used Alaskas for a quite a few years and lately have been seeing them popping up in finer bars. They have become a Boston bar scene thing and collectively we own quite a few.

In A Few Papers For The Industrious I take a break from foundry work to read from papers that Rex sent in which I’d been hoping to come across for a few years now. Having gotten in the mood, I also shared up some delicious snippets from the archives of rum arcana.

Patrick Neilson Tells of Rum (Like No Other), 1871 This was easily my favorite piece of the entire years with its companion article J.S. Tells of Rum, Jamaica 1871. These papers kick off the fine rum era and are full of the choicest opinions on things like skimmings that many of us have heard of but don’t quite understand.

This piece was short and fun and simply shows that even as far back as 1885, which is a few life times out from the birth of the term, people were into tracking down etymologies: Etymology of the Word Rum by Darnell Davis (1885).

This is only for nerds and if you’re short on time and need to triage your reading, skip this, Occurance of Lime-Incrustations in Rum Stills (1903), and the next post, Scientific Control of a Rum Distillery by F. I. Scard.

As I collect papers, a genre of writings is emerging and this is an enjoyable example from a seldom described island. W. M. Miller Tells of Rum in Guyana for Timehri (1890)

img_7790

We ended the year with the Return of the Champagne Bottle Manifold where I mastered single point threading on the manual engine lathe and started cutting the proprietary 19/32-18 threads myself to improve the design. My design over the years has evolved to be really spectacular, but they didn’t really catch on because programs didn’t want to pay for them and those that did had them frequently stolen. The most serious users ended up being Champagne sales reps.

Who knows what next year will bring. Sadly for the Bostonapothecary blog, my focus will be in the workshop. Ask questions or challenge me and I may sit down and post.

Cheers!

W. M. Miller Tells of Rum in Guyana for Timehri (1890)

In Guyana, rum had attracted yet another Victorian genius and that was W.M. Miller. His article for the amazing publication Timehri reinforces the idea that rum consistently attracted PhD level scientists to push it ever progressively forward.

This article is pretty cool and after reading so many of these I keep coming across little subtleties that show the evolution of ideas. Thinkers like Micko or Arroyo did not come out of nowhere, but rather came from a continuous line of thinkers at the forefront who were happy to share their ideas. Greatness in distillation is not about secrets, it is about execution.

In reports on estate’s work it may have a few lines devoted to it; but it is seldom that any genuine interest is taken in it, either in its manufacture or in its quality. The usual feeling is that the rum makes itself, and does not require any looking after. The molasses is diluted and the wash distilled; and if the results are low, the molasses is blamed; and if the rum is bad, the distiller gets a reminder.

Wine making itself is an adage & rhetoric of the terroir scene, but it is far from the truth. To bridge the gap, I try to differentiate between traditional processes and guided traditional processes.

But in these latter days there has been a brightening up of interest about rum. The Government meditate new legislation; and home buyers are becoming more fastidious owing to the quantities of continental root spirit, called “Rum,” that are thrown on the English market. This latter reason soon affects the manager of the estate, and for some time there is continuous rubbing of hands and sniffing, with more or less satisfaction—generally less.

Beautiful language and we see that old technique—rub a little spirit into the hands to open it it up, then sniff! The continental spirit is made from sugar beets and supposedly, though a lot of effort has been thrown at them, they just can’t make a product with aroma worthy of being called rum.

We have the misfortune to cater to a fancy of the most changeable type. So it is with rum. We have to suit an unknown personal taste, and, let us do our best, if we halve a sample, A. will laud it, while B. will probably call it “beastly stuff.” But the chances are that B. does not know what a good rum is, as the sniffing test is still fashionable; and we come back again to the desirability of a “polariscope,” wherein B’s taste is the optical part that indicates “beastly stuff.” In others words, if we had such ready chemical tests as could permanently record B’s taste in some fixed way, we should be able to avoid shocking B., and at the same time to please A.

A segmented market was on his mind. The polariscope idea is basically to turn a rum into a definite number. Even now with GC-MS we don’t know exactly what chemical compounds correlate with notions of quality. Personally, I love wandering in the realm of acquired tastes.

It is with the hope, therefore, that some universal method may be introduced, not only here but by the buyers also, so that every one’s particular liking may be recorded in figures, that I have come forward with the following contribution to the subject. The “everybody” in this case is probably a few individuals in two or three markets.

This became a bit of a quest for a lot of people, and I do enjoy the way Arroyo avoided it. We always need to remember that the occasion around a sensory experience adds rhetorical power and shapes taste while so does context and telling the story of a fine spirit. Taste, especially when cultivation becomes a hobby is especially malleable. We are no longer authentic hard laborers drinking the same product on end simply to quench our thirst and sooth our sores.

Another reason that should demand the more systematic analysis of rum is the desire to guard our product from being imitated by the Continental spirit. Unless analyses of the genuine spirit be well known and widely circulated, analysts would find some difficulty in distinguishing the genuine from the imitation.

These aspirations become very significant and the efforts also produced much better genuine rum.

The usual here is to allow the fermentation to proceed spontaneously, and if a return of 5 percent, to 6 percent, of 40 O.P. spirit be obtained from the wash set at 1o6o the result considered satisfactory.

Simply we note they were still practicing spontaneous fermentations, but we should think of these very differently than wine.

In practice, as before stated, it is usual to allow the fermentation to proceed spontaneously. The addition of sulphuric acid or ammonia sulphate does not in the least start the fermentation. They may, or may not, improve the wash and make it a more suitable medium for the development of the yeast, but unless yeast in some way gets added, the addition of any quantity of these bodies can be of no use in starting fermentation. During grinding operations little trouble is found in starting fermentation through the addition, one way or the other, of the highly fermentable washings and scums; but if distillation has to be conducted by itself, after a period of rest, the trouble in starting a good fermentation and the low results, will no doubt be remembered by any one who has had to deal with it. To find the reason of this we must consider what fermentation is.

Here is some juicy morsels. There was often trouble starting fermentations later in the season when skimmings were no longer available. It was not yet realized how to create a starter and how stages of yeast reproduction differed from stages of alcoholic fermentation.

But what is in the scums and skimming!? This is the cream if you remember. Are they particularly rich in the building blocks of yeast growth? and/or valueable aroma precursors like glycosides? Who knows and these fractions might not even exist anymore due to large advances in sugar processing. What is their official status?

Alcoholic fermentation is the change a saccharine solution undergoes when the yeast plant developes in it. Being a plant, yeast wants food very much the same as other plants, and unless the foods are there it will not develope. But every variety of plant has one special soil best suited to it ; and if it is our object to cultivate any particular plant, it is to our advantage to give it the food on which it flourishes best. Yeast requires carbohydrates such as glucose, mineral matter in the form of potassium phosphate with a little of the phosphates of lime and magnesia, and albumenoid bodies which must be in the soluble state. The reason why these foods must be in the soluble state, is that the yeast only feeds, as it were, through its skin.

Great metaphors. Arroyo had really great explanations of how fermentations get stuck.

In molasses, we have the carbohydrates and probably sufficient alkaline phosphates, but the soluble albumenoids are altogether wanting. It is owing to their absence that fermentation is not readily started in molasses. In cane juice, on the other hand, these albumenoids are in the best assimilable state, and hence the rapid fermentation that is so easily set up. We have here a very easy means then of establishing fermentation in molasses.

Here we go. I also suspect that the yeast count on the skins of canes or grapes or fruit, or anything not boiled like molasses is very significant and helps it burst into rapid fermentation.

A little “cush-cush” can be made at a moment’s notice, which, when once fermented, will serve to start the vat. The yeast when once started has the power to render soluble the insoluble albumenoids that exist in the molasses, so that the fermentation will then proceed of itself.

He drops the cush-cush! His explanation here may be spurious.

The advantage of establishing a vigorous and healthy fermentation cannot be too strongly recommended. It alone produces a pure alcohol. The languid insipid vat is productive of fusel oil, besides becoming an easy prey to the action of deleterious ferments.

Arroyo eventually takes the math of the starter to the nth degree and explains how to figure out how big exactly they should be and what is compromised when size changes.

The only means of escape then is to start such a vigorous fermentation that the predominance of the yeast will entirely obscure the harm done by the other ferments or kill them to a great extent; for in fermentation, as well as in everything else, it is only that which is adapted to the environment that flourishes.

Sage advice. There is the phenomenon of killer yeasts, but I’m not sure if that is what Miller is intuiting here.

As it is in the beginning of the fermentation that the lactic acid ferment is likely to get a hold, the necessity for quick starting of the alcoholic fermentation is obvious. Towards the end both the alcohol and the acid developed keeps it in check, but neither of these (the alcohol and acid) restrain much the action of the acetic acid ferment which begins to be very evident towards the end of the alcoholic fermentation. The appearance of a peculiar film on the surface of the wash indicates the presence of a species of Saccharomyces that is busy changing the spirit into acetic acid. It should be beaten down under the surface where it cannot obtain the oxygen necessary to destroy the spirit.

Interesting stuff in here. A lot of different things can grow in rum ferments and Miller probably knows a vinegar mother when he sees one (or smells one). I wouldn’t have thought it would be effective to punch it down below the surface. I’d have thought it would either float back up or be encouraged by whipping oxygen into the brew, but Miller seems like he achieves success. Was it common to witness all sorts of deleterious growths and deal with them as such? There are top fermenting saccharomyces yeasts, but this seems different. There are also weird mucusy growths that can turn a ferment into thick scum. When you’ve got them you’re on your way to a kombucha SCOBY.

This is not the Acetic Acid ferment proper. It develops throughout the whole wash and is quite a different organism. It flourishes best at the same temperature as yeast and is thus difficult to restrain,but as it only appears after the alcohol is formed, much damage by it may be avoided by distillation at once.

For me, this isn’t ringing a bell yet.

The butyric acid ferment feeds on the fatty matters present. It is to the acid that this ferment produces, in combination with the alcohol, that the flavour of rum is partly due. The distillation of the wash should be conducted as regularly as possible. Any rapid increase in the temperature forces over impurities that otherwise should be retained by the rectifier. The temperature at the exit of the rectifier should not exceed 18o deg, F.

The big reason pot still distillation needs to be slow and regular is that a more rapid boil challenges the subtle reflux contributed by the walls of the still. Reducing this subtle often over looked reflux drops the distillation proof and allows more congeners to come across in the hearts fraction. The spirit exiting should be kept cool so that it does not evaporate creating a loss and so as that it doesn’t dissolve the copper of the still. Inadequate condensing temp is a big problem for the bush rums of the world in places like Trinidad and Cape Verde.

I’ll skip Miller’s explanation of all the congener classes which is actually notably cool. He is wrong sometimes but shows how much they knew and how much they were willing to take a stab at back then. Brilliant.

Measure out 25 c.c. of the alcohol into a small glass flask, and drop in 15 c.c. strong sulphuric acid. Pure alcohol when treated in this way gives no colouration, but the presence of aldehyde gives the solution a brown colour, and the fusel oil a dark purple.

Arroyo practiced this test not to measure congeners by coloration like Miller but to chemically reveal rum oil. Other aromas are rendered neutral by reaction with the strong acid.

Tested in this way, the ” heads” of a still give very deep dark browns, which fall very quickly and give place to a pink with a trace of blue; which continues till about the time when the “low wines is cut,” when there is a sudden rise of colour, the dull purple predominating. The white rum itself can be tested in this way, and fair comparative results obtained.

Fascinating. I’ve been itching to do this test and was promised some surplus acid. I already hatching a plan for what can artfully be done with it.

The testing of rums which are already coloured, with sulphuric, of course cannot be done. It becomes first necessary to distill it from the colours. This should be done rapidly without the addition of any alkali, till all has passed over that can, without burning, the first-third and second-third being caught separate from the last. Halve each of the thirds, and mix them, this will represent the rum; and test the other portions separately. These separate portions will give further insight into the nature of the rum.

Very profound if you look at the ideas of Micko and Arroyo that come later. Let me quote it again:

These separate portions will give further insight into the nature of the rum.

This idea elaborated is everything.

 

Scientific Control of a Rum Distillery by F. I. Scard

This great (possibly 19-teens?) article from the International Sugar Journal by F. I. Scard immediately brings up some themes I’ve been talking about in distillation. For starters, Scard was a name who criticized the Veley’s in their debacle over the micro organism of faulty rum 91898). Remember the punchline?—the organism might simply have been decomposed raw meat! And the hint comes from a comment by IRS researcher extraordinaire, Peter Valaer in 1937. Can you not see this wicked web we’re weaving?

Any how, the idea I’m promoting is that just like fine wine did not exist without the lab, the same is true for spirits. The winners of the judgement of Paris were all lab guys and the same will be true for great distillers past and future, skipping the present.

In the case of a rum distillery the position is very different. It is not the sucrose alone which has to be accounted for in the course of manufacture, but all the formentable sugars, glucose, and invert sugar, as well as sucrose, which find their way to the distillery. The object of the operations of a distillery is not to separate and obtain these sugars as such, but as a product formed from them by biological means before its actual separation by distillation, a product in which the flavour is a vital point in its value. The microscope thus plays an important part in the control of a distillery.

Here we have language that sums up chemical and biological control and shows conscientiousness. The science goes on to get very heavy and shows that people of PhD level science education were involved in the production of fine rums. After much heavy duty science wanking Scard puts a time stamp on a known technique for making fine rums:

It sometimes happens that the wash is not sot up all at once, but that fermentation is allowed, purposely, to start before the set is completed, being gradually fed with “sweets” until the desired charge is obtained. In this case the constituents of the wash must be measured separately, and the sweets determined separately too.

Incremental feeding of washes was a technique further elaborated years later by Arroyo and may be unique to rum fermentations. He does later go on to criticize the technique possibly because it does not fit neatly into his idea of control.

As already mentioned, the microscope plays an important part in the control of the fermenting loft. The great enemy to fermentation is the putrefactive, bacillus and the wash requires to be constantly examined for the presence of these organism. A few are invariably present, but, if the condition of the wash is favourable to their development, the yeast plant is soon smothered, and there is nothing else to be done but to clean up the distillery in every detail. It is as well also to keep a microscopic eye on the yeast plant, to see if it is developing properly, and at the same time to look out for moulds or other organisms inimical to the yield of alcohol.

Oh, maybe we are not talking about fine rum here after all, but rather the commodity category? Fine products require a certain philosophy where control isn’t sought completely, but rather just enough control to frame windows for chaos. Arroyo later showed us the benefits of controlled putrefactive fermentation and aroma beneficial moulds. The rums of Hampden estates go on to tell a very singular story where they break all the rules and there is certainly no one going around “cleaning up the distillery in every detail.”

The number of gallons going to the still in the form of wash during the week is recorded, together with the amount of alcohol received from it. These should agree within 5 per cent, with a pot still and 1 per cent, with a continuous still. The lees, or spent wash, should also be examined for alcohol by distillation, daily in the case of a continuous still, and from every distillation with a pot still, to see if any alcohol is escaping in this way. 250 c.c. should be taken and 50 c.c. distilled off, the gravity of which is taken with a specific gravity bottle, and corrected for temperature, when any loss of alcohol will be at once discovered.

This test can be run with a profit motive, but if you put in the time, you’ll also learn about lost aroma. With a flipped motive, fine rums can benefit from many of the same protocols as commodity rums.

In order to ascertain the amount of spirit obscured, the following is a reliable and simple method, and preferable to the distillation method in the case of strong spirits like rum. The specific gravity of the coloured spirit is taken in a specific gravity bottle, or by Sikes’ tables, if the Sikes’ hydrometer is used. 100 c.c. are then taken and evaporated until all the spirit has been driven off, i.e., when the residue has reached a syrupy consistency. The residue is now dissolved in water, and made up accurately to 100 c.c. at the same temperature at which the gravity of the coloured spirit was obtained. The specific gravity is now taken. The decimal part of the gravity is then subtracted from the gravity of the coloured spirit, the remainder giving tho gravity of the spirit without the colour. From this gravity the quantity of alcohol present can be obtained by reference to tables.

Currently the TTB requires the distillation version of the test, but the version presented by Scard (and arrived at my myself independently years ago for studying liqueurs) is remarkably easy and with modern day instruments can be performed on remarkably small scales with amazing accuracy. Small, 5mL, volumes of historic rums could be sacrificed to get this data. There is huge criticism of obscuration in the rum world and yet no leading authority has been sophisticated enough to perform this test for themselves. From 5mL-10mL samples, and a collection of bottles, it would take very little from the rum community to look at the obscuration changes in many brands over recent history. If consumers feel obscuration is important to the fine rum category then here you go.

Faults in rum are found by the following test. A portion of the coloured rum taken from the cask before shipment is diluted with twice its volume of distilled water if it is strong rum of the Demorara description, or with an equal volume if of the weaker Jamaica kind. It is then placed in a small cylinder covered over with a glass plate, and allowed to stand for 24 hours. If at the end of this period there is no appearance of cloudiness the rum is free from “faults.” If a cloudiness appears it may be due to :—
(1) Resinous matter from the wood of the cask ;
(2) A precipitate from too-highly burnt colour ;
(8) The presence of low bodies of the fusel oil class which should have been kept back in the low wines.

Other reasons have popped up for faulty rum and I put up a great series of papers the other day.

 

Occurance of Lime-Incrustations in Rum Stills (1903)

This is a short fun one from the 1903 International Sugar Journal. Many of us think of old school rum washes as being quite dirty, but what toll did it take on equipment? And what does it tell us about Arroyo’s focus a few decades later?

By 1903 sulphuric acid was in wide spread use to acidity fermentations and that led to lots of salt deposits.

So all of the biggest concerns were from commodity rums produced on continuous column stills and not the fine rums produced on pot stills where they could simply discharge and then flush out.

This phenomenon where alcohol changes how the crystals form may be why I’ve had much better success creating sugar cubes in an alcohol/water solution than in water alone (a project from probably six years ago). Very interesting.

What he goes on to explain is that sugar and acidity in the wash increase the solubility of gypsum so that 1 part to 400 part drops considerably. Gypsum actually precipitates as the wash ferments because the sugar content decreases.

These ideas are before the era of the Alfa Laval continuous centrifuge.

It would be Arroyo’s focus to go on and solve a lot of these problems with new ideas in molasses pre-treatment which resulted in significant advances to commodity rum production. It is hard to say if Arroyo faced the exact same challenges. As sugar producers gained increased chemical control and gathered more data, they were able to produce higher quality molasses. A lot of what Arroyo removed from molasses was not exactly gypsum but gums and other materials that could impede fermentation besides clogging a continuous still.

Etymology of the Word Rum by Darnell Davis (1885)

A fun snippet from the files is this 1885 look at the etymology of the word rum. Judging by titles of his other works, the author, the honorable Darnell Davis, was quite the character, but so far I haven’t figured out if he was any kind of colonialist racist or not. Google has no full view of his essays, but I’ve yet to consult other resources (too busy at the foundry).

Davis’ work comes a whole 200 years after the birth of the word, rum, at a time that was pretty much the birth of modern rum with any stylistic identity (beginning of chemical and then later biological control).

Most enthusiasts today believe there are few works on the subject, but rum it turns out, has the most well documented history of any spirit category. This blog has become sort of a monument to and repository of that technical history.

Categorizing rum is all the rage, and lately in discussions, I’ve been promoting the top most categories of fine rum and commodity rum (which we will eventually sub categorize). This backs away from cliches like sipping and mixing as well as industrial and artisan. It is no revolution in rum categorization, but the words are semantically powerful and have been very valuable to understanding wine. Wine, we will repeatedly see, is where we should look when figuring out how to categorize and market rum.

My big point is that fine rums exist, and they are certainly out there on the market, but the category does not yet exist. We cannot have fine rums sorted from all the commodity junk until the complete history of rum comes out. We just went from thinking Jamaican rum was shrouded in mystery to finding out it has the most documented history of any spirit complete with time stamps, intimate anecdotes, and first names galore.

Fine wines tell a story, and that is largely their whole point, but we cannot read it unless we clearly know how they were produced. Things we don’t quite understand like the contribution of cane varieties cannot be pulled apart until the other variable are isolated by disclosure. We still have no wide acknowledgement of Schizosaccharomyces Pombe as a rum yeast. Giant holes exist in rum knowledge that would change any categorization system so I think a lot of people are getting ahead of themselves.

Fine rums cannot tell their story until we know more about them starting with their technical history and evolution. This has nothing to do with banishing caramel coloring or the arbitrary numbers attached to a solera system. Dwelling there will just set rum back. The future of fine rum literature will probably resemble Andrew Jefford’s writing on wine, but it is nowhere near there at the moment.

Darnell Davis’ 1885 etymology of rum is another step in telling the history of rum that will get us closer to the category of fine rum. Pulling these papers out is less about helping to produce better rum (like some of my efforts for new distillers) and more about helping to read rum. We need a continuous story from the birth of the word to the bottles we are currently enjoying.

Spirits get shaped by countless influences from the cultural to the philosophical to the scientific. Wars shape spirits and so do unique government programs like the various experiment stations or the infamous Rum Pilot Plant. The fine category begins with chemical and biological control to sculpt a spirit into an ideal and then the philosophical is free to take over.

Fine wine, we must remember, was born in the lab. The American winners of the Judgement of Paris were all lab technicians turned winemakers. This allowed them to follow the progressive process of incremental improvement for their wine. These producers, particularly Warren Winiarski, were deeply involved in the philosophical end of wine construction, but they also had the technical foundation to execute all their ideas.

Let’s quote Winiarski because it is wildly relevant:

That was also there. All of those things. We didn’t talk about the major ingredient, the accumulation of scientific information and things that people did at Davis. Maynard Amerine’s work with grapes and where they grow best –that bulletin of the Agriculture Experiment Station at the University of California that I used as a Bible, reading it in a devotional way. Every day you read a little bit of this, at night you read a little bit of that, getting intimately immersed in the contents. You read another chapter and tried to figure out what these must analyses could mean and what their significance was. The existence of such a rich body of knowledge was certainly another major ingredient. And I think the other thing was the people, among whom I count myself, whose taste and aspirations were formed elsewhere and who brought in the ability to actually accomplish the coming together of these several elements.

Maynard Amerine and the culture of that UC Davis era have always been a guide for the work at the Bostonapothecary. A Winiarski or a Grgich of the rum world will not come along until we assemble and digest all the literature. Also, notice that Winiarski et al. were studying texts meant for commodity wine production. These fine wine makers literally sat in (old school non degree sat in) the back of the class to learn anything that might help them produce fine wines. What are the differences between fine and commodity? Philosophy, scale, and compromise.

A big problem the new distilling movement has is a shoddy notion of philosophical ideals and absolutely zero chemical and biological control. With few exceptions, they have all pretty much only gotten as far as: “look mom, I made rum”. And of course it is not rum, which is a concept that pops up in the literature time and again, best reinforced by Arroyo. Not all things made from sugar cane products are rum and if they’re not rum, they are in the commodity category. The commodity category has things that aren’t fit to be called rum as well as things fit to be called rum, but not fit to be called fine. Right now we are seeing some of the most expensive commodity distillates ever produced hitting the market from the new distilling scene.

Skimmings communicate in a far greater degree than molasses the characteristic stamp to rum. A spirit made of pure molasses and water would scarcely be rum; and instances are familiar of molasses having been removed from one place and distilled at another, which, with different skimmings, have produced an entirely different rum. -J.S., 1871

Ideas evolved a bit and rum, according to Arroyo, starts with a rum yeast, and what is special about that yeast is that it takes advantage of precursors in the substrate to produce extraordinary congeners, of low frequency of occurrence, and of universal harmonic value, all the while limiting congeners like fusel oil which overshadow when in excess. Yet we’ve only learned all that recently by rediscovering literature that had been lost for decades.

Just like the chemical and biological aspects of rum production have a history, so too does the philosophical and that heritage goes back much further than anyone had recently thought. Just the other day, a paper turns up from 1871 with an author (J.S. also quoted above) describing the idea of forcing versus intercepting flavour. Though it is proto-philosophy, the concept sit parallel to the idea of wines of effort versus wines of terroir.

Only with recently revealed technical history could we read more of the story of the fine rums of Cape Verde because much of their unique character has to do with their sugar cane juice not being centrifuged and defecated like the rhums of Martinique.

Don’t forget that many of the fine rums of the last ten years from independent bottlers such as Plantation were not very conscientious nor produced with much enlightened philosophy. They were found art, accidentally over aged, and accidentally ending up extraordinary after missing their modest targets. Their architects weren’t part of contemporary culinary with their own twitter accounts, but were often government employees and at the most generous, many could be called outsider artists (brilliant and conscientious, but within a tiny bubble). The faceless nature and the way so many producers imploded is a big part of the intrigue for the sleeping relics they left behind. But on distilling day for the 1986 Barbados rum bottled by Plantation, if you said fine or asked about forcing or intercepting flavour, the Barbados boys would say: ‘the fuck you talk’n about?’ It was distilled like a brick house, but with commodity ambitions as the basis for some anonymous blend somewhere.

Anyhow, read Darnell Davis and marvel at his tracing the etymologies of rum and his tales of digging through the libraries of Europe to do it.