Harris Eastman Sawyer, Frederick Felton, and the Free Alcohol Law

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

This is probably the most exciting untold story in rum. When you read the script, imagine Gregory Peck as Harris Eastman Sawyer.

The committee met at 11 o’clock a. m.
Present: Senators Aldrich (chairman), Burrows, Piatt, Hansbrough, Hale, Daniel, Money, and Taliaferro.
Present, also, Frederick L. Felton, esq., of Boston, Mass.; Dr. Harris E. Sawyer, of Boston, Mass.; John B. Purcell, esq., of Richmond, Va.; Samuel A. Woolner, esq., of Peoria, Ill.; H. J. Kaltenbach, esq., of New York City, N. Y.; Peter J. Hennessy, esq., and others.

(Hon. John W. Yerkes, Commissioner of Internal Revenue, was also present during the latter part of the hearing.)

The committee thereupon proceeded to the consideration of the bill (H. R. 24816) “To amend an act entitled ‘An act for the withdrawal from bond, tax free, of domestic alcohol when rendered unfit for beverage or liquid medicinal uses by mixture with suitable denaturing materials,’ approved June seventh, nineteen hundred and six.”

STATEMENT OF FREDERICK I. FELTON, ESQ., OF BOSTON, MASS.

Mr. Felton. I am a distiller, Mr. Chairman, and have with me my chemist, Doctor Sawyer, who is thoroughly familiar with all the details of this matter. We desire a very simple amendment—that is, we would like the privilege of denaturing at the proof of 150° instead of 180°.
The Chairman. You make rum, I believe?
Mr. Felton. Yes, sir.
The Chairman. You are about the only maker of New England rum that is left, I think.
Mr. Felton. No; there are seven of us.
The Chairman. Are there as many of them as that?
Mr. Felton. There are seven of us left. I am perhaps the largest and the oldest, but there are seven scattered through the country— one in Covington, Ky., one in Portsmouth, N. H., one each in Newburyport, Charlestown, Everett, Somerville, and South Boston, Mass.
Senator Hale. Where is yours; in Newbury port?
Mr. Felton. No; not Newburyport. Mine is in South Boston. The Newburyport distillery is the Caldwell house.
We would like this bill, if possible—as well as all the amendments that are going through, which we do not oppose at all—to take effect upon its passage rather than wait until September, excepting that portion or it—which really requires more time for the Commissioner to make his regulations—In regard to the small distilleries throughout the country.
With your permission I would like now to introduce Doctor Sawyer and let him go into the details of the matter. I notice that the younger members of a business know more about it than the older men, who have laid aside a little bit and have attended less to the details.

STATEMENT OF DR. HARRIS E. SAWYER, OF BOSTON, MASS.

Doctor Sawyer. We are in favor of the passage of the act, but there is one amendment, Mr. Chairman and gentlemen, which we would like to see made. That is the insertion of a clause which will permit the denaturization at any proof that may be desired by the consumer, not lower than 150°.
The Chairman. What is the present limit—180?
Doctor Sawyer. One hundred and eighty. The reason why we ask for the insertion of this provision is that many of our customers, who use our material for industrial purposes, feel that it is a hardship on them to be obliged to use a material that has been redistilled to 180° of proof.
As you will remember, it was brought out in the hearings of this committee last spring that a certain amount of alcohol is used by tobacco manufacturers in the preparation of their leaf. That amount is not especially large in proportion to the amount of tobacco manufactured, but this use of alcohol is an essential feature in the manufacture of many brands, both of smoking and of plug tobacco—that is, both of the loose or granulated tobacco and of the plug tobacco.
Senator Hansbrough. Is it used in the manufacture or other articles than tobacco?
The Chairman. Do you mean to inquire whether rum is used?
Doctor Sawyer. No.
Senator Hansbrough. Only in tobacco?
Doctor Sawyer. Our industrial sale is solely to tobacco manufacturers.
Senator Hansbrough. All right; go ahead.
Doctor Sawyer. The part which the alcohol plays in tobacco factories is threefold. In the first place, it is necessary for the manufacturers to use alcohol in order to carry into solution many gummy materials that are added, for purposes of binding, to tobacco that is to be made into plugs. In the second place, they are obliged to use a considerable amount of alcohol in the lubrication of machinery and in cleansing floors. In the third place, they find that the presence of a certain amount of alcohol during the manufacturing processes tends to prevent the formation of mold on the somewhat moist tobacco leaves. They have been accustomed in the past to buy rum at 100° proof for that purpose; but they can equally well use a spirit at about 150°.
Senator Hansbrouqh. Can they not use it at 100°?
Doctor Sawyer. They would be able to use it at 160°, but it is desirable to hold the degree of proof down within certain limits, for this reason: In our crude molasses alcohol there are certain bodies not alcohol themselves; I will not pretend, even as a chemist, to say what they are, because we simply do not know. Their amount is so small that we are hardly able by chemical analysis to estimate their proportion. They are bodies of a waxy nature—something like cocoa butter, I think, and their bodies are left behind on the leaf when all the alcohol has passed off into the air. Now if we redistill our alcohol from a proof of about 150° up to the proof of 180°, to which proof we are obliged under the existing regulations to distill if we wish to denaturize, we take the wax out absolutely, and thus we despoil the material which we supply the tobacco manufacturers of a constituent which has been shown to have a very distinct value to them; I say again that we do not know what the waxy material is, so that we are unable readily to add anything of the sort to denaturized alcohol. But it keeps the tobacco from drying out, and it makes it smoke sweeter. If, several months after its manufacture, you feel of tobacco that has been treated with our 150° proof alcohol you will find that it balls together better, and that it packs better in a pipe than one that has been prepared with 180° proof spirit.
Furthermore, our crude alcohol carries at 150° a variety of odorous compounds, derived partly from the molasses which is our raw material and partly from chemical changes which take place during fermentation. These bodies are ethereal in character rather than alcoholic, and they impart to our crude spirit a disagreeable rankness which unfits it for drinking, even when it is reduced in proof, until it has been properly matured. Like the wax, they seem to be retained in the tobacco after the alcohol itself has evaporated, and they develop there an agreeable fruity character which fails to appear when a high-proof, purified alcohol is substituted for our crude, medium-proof product. They also resemble the wax in being removed from the crude spirit when we redistill it from the proof of 150° up to 180°.
Now, these fruity odors which develop on the leaf are considered to be very largely responsible for the character of certain brands of smoking tobacco; and while the manufacturers are very anxious to get the benefit of the remitted tax, to which they unquestionably are entitled under the act of June 7, they desire equally to hold the present character of their brands, and they wish, therefore, to be allowed to use the crude spirit, denatured at 150°, rather than the purer alcohol of 180° proof.
We, of course, are equally anxious to be allowed to furnish them the material which is most suitable to their manufacturing processes. We have teen building up this part of our business for the past twentyfive to thirty years and naturally wish to be able to hold it, especially as the consumption of rum as a beverage has been diminishing year by year. Our ability to retain it will depend, of course, upon our ability to supply a spirit of suitable character. We have made a large number of experiments during the past year to find out whether the tobacco manufacturers can, with advantage to themselves, use 180° proof spirit, and we find that undoubtedly it means a loss to them on account of the danger of changing some of the qualities of established brands.
I would like at this point to say that these experiments included tests of finished tobacco to ascertain whether any alcohol is retained therein. I found that practically none is so retained. In one case, the tobacco having been soldered up in tin cans, there were traces of alcohol present in the proportion of about one-half a gallon per ton of tobacco. In samples of plug tobacco no trace of alcohol could be detected.
Senator Hale. Let me ask you a question right there. You have stated what your market is. How does that apply to all these other establishments throughout the country? Are they situated just as you are about their market for their product?
Doctor Sawyer. Do you refer to the grain distillers?
Senator Hale. The rum distillers.
Doctor Sawyer. What we say of ourselves would apply equally to all of them.
Senator Hale. Is their market largely with the tobacco people?
Doctor Sawyer. No; I suppose that we have rather more business with the tobacco manufacturers than the other distillers do, as our business is larger than that of any other rum distiller.
The Chairman. What proportion of your product is sold for drinking purposes?
Doctor Sawyer. About one-third in this country and about one-third abroad. The balance is sold to tobacco manufacturers.
The Chairman. You sell rum abroad, do you?
Doctor Sawyer. Oh, yes; to the extent of a third of a million gallons a year.
Mr. Felton. Almost exactly half of what we produce goes that way.
Senator Hale. Do you think that proportion applies to these other establishments, as you have divided it?
Doctor Sawyer. I have not any means of knowing, sir.
Mr. Felton. I think I can answer that practically correctly. There are only about three, or possibly four, distillers who export any rum whatever. There is one concern which exports nearly as much as we do; one not nearly as much as that and one a very small quantity. The others export nothing at all. Theirs is all used for drinking purposes in this country.
Senator Hale. About what proportion is used for drinking purposes here in this country?
Mr. Felton. About as the doctor said—from 25 to 35 per cent, I should think, of all that is made.
Senator Hale. Not far from a third?
Mr. Felton. Not far from a third. Nearly 50 per cent, by the records of the Internal Revenue Department, is exported to Africa, Constantinople, Japan, Australia, and different places; and that, of course, goes out in bond.

Senator Hale. That is for drinking purposes?
Mr. Felton. That is usually used for drinking purposes, making cordials and the like.
Senator Taliaferro. Then there is not more than about 20 per cent that is used for the tobacco?
Mr. Felton. Yes; from 20 to 25 per cent, the difference, of course, between the 35 per cent used for domestic consumption and the 50 per cent for foreign consumption. These are approximate figures, of course.
Senator Taliaferro. That is a total of 85.
Mr. Felton. And about 25 to 35 per cent for the tobacco.
Senator Taliaferro. That would leave about 15 per cent?
Mr. Felton. Well, it is probably nearer 20 for tobacco. We can not get at accurate figures, of course, but that is as near as we can get at it. We have, perhaps, forty to fifty customers among the tobacco manufacturers who come direct to us; and then we think there are about fifty or sixty others that come to us through large dealers in spirits; and the balance we know nothing about. They probably go to other distillers, and some do not use it at all.
Senator Hansbrough. You do not pay a tax on the alcohol sold to be used in tobacco?
Mr. Felton. We do now. Oh, yes; on every gallon.
Senator Hansbrough. You do now?
Mr. Felton. Certainly; but under the new law if we make that rum 180° proof then the tax will be remitted if we denature the alcohol, as the Department now allows us to do, with a denaturant that the doctor will tell you about. We are already allowed to denature it and sell it to the tobacco people without the tax provided we put it 180° proof; but we want to save these odors the doctor tells about for the tobacco people by not making it at so high a proof.
Senator Hale. That is your main point—you want to use 150° proof instead of 180°?
Mr. Felton. That is our main point; practically, our only point.
The Chairman. On the ground that the tobacco manufacturers can buy it at 150° and could use it to better advantage than if it was 180°?Mr. Felton. It retains the odors they desire.
Senator Hale. The 150° proof would assimilate better with their manufactures than the 180°?
Mr. Felton. It gives them the odors they want.
Doctor Sawyer. And this other quality that I spoke of, the waxy substance.
Senator Hale. Yes.
Doctor Sawyer. The wording of the modification which we would suggest would be something of this sort: We would insert after the words “domestic alcohol” in lines 7 and 8 the words “of not less than one hundred and fifty degrees proof.” That would permit denaturalization down to that point, but not below. We will submit to the committee a little later a draft showing exactly what we desire the first section of the bill to be.
We have felt that there was no reason why we should not be allowed to denature at as low a proof as 150° under the existing law of June 7, 1906. The Revised Statutes specify regarding alcohol as follows:

Sec .”1248. Distilled spirits, spirits, alcohol, and alcoholic spirit, within the true intent and meaning of this act. is that substance known as ethyl alcohol, hydrated oxide of ethyl, or spirit of wine, which is commonly produced by the fermentation of grain, starch, molasses, or sugar, including all dilutions or mixtures of this substance, etc.

According to section 3248 of the Revised Statutes, therefore—and this, so far as I am aware, is the onlv place where alcohol is defined in our law—alcohol is alcohol, regardless of its strength, whether the latter be 150° or 180°. The act of June 7, 1906, reads, in part, as follows:

That from and after January first, nineteen hundred and seven, domestic alcohol of such a degree of proof as may be prescribed by the Commissioner of Internal Revenue may be withdrawn from bond without the payment of Internal-revenue tax for use in the arts and Industries, provided said alcohol shall have been mixed In the presence and under the direction of an authorized Government olficer, after withdrawal from the distillery warehouse, with methyl alcohol or other denaturing material or materials or admixture of the same, suitable to the use for which the alcohol is withdrawn, but which destroys its character as a beverage and renders it unfit for liquid and medicinal purposes.

Therefore we requested permission to denature for our tobacco customers with tobacco extracts at proofs as low as 140° or 150°. The Commissioner has granted the first part of our request, but he says that in his belief he is not authorized under the law to establish so low a limit as 150°. In his opinion, alcohol is a stronger material, in spite of the fact that the wording of section 3248 would lead one to say that any spirit of any strength down to or below 100° of proof is alcohol within the meaning of the law.
What we now want, therefore, is an explicit statement in this bill that we shall be permitted legally to denaturize as low as 150°. The only objection which could be made to our denaturization at that low proof, in my belief, would be one to be based upon the chance of fraud. Now, I do not see how any fraud could possibly arise, because the denaturant which we are going to use is just as efficient at one strength as at another. The manufacturer who had bought alcohol denatured by our process at 180° would be able the moment he received it to add water in his factory to bring it down to any proof at which he wished to use it; and it makes no difference whether that water is added by him after the alcohol comes into his possession or whether it is left in there from the time that it is made by us.
Senator Hale. What is your denaturing agent?
Doctor Sawyer. A mixture of two aniline colors and a certain proportion of nicotine—nicotine being a body of nauseating character, when taken in sufficient doses, and being at the same time a characteristic element of tobacco, so that we are not introducing into the alcohol anything which would not normally be present in the tobacco to which it is added.
Senator Hansbrough. What is the cost of it?
Doctor Sawyer. Of the nicotine?
Senator Hansbrough. No; of your denaturant.
Doctor Sawyer. The cost figures out about 1 cent for every gallon of strong alcohol; about one-half a cent per proof gallon.
Senator Hansbrough. That is a cheap denaturant.
The Chairman. Does the nicotine you use come from tobacco?
Doctor Sawyer. It is extracted from tobacco stems. They extract it in a state of almost chemical purity in some of the Louisville factories where they work up tobacco refuse. We propose to buy it as chemically pure nicotine, add a certain amount of it to the requisite amount of aniline dyes, and then add sufficient water to bring it to a definite strength; and then 1 per cent of that, by volume, is to be added to 100 parts of alcohol.
Senator Hale. Has this denaturing agent, this composite agent which you use, been submitted to the Commissioner of Internal Revenue?
Doctor Sawyer. Yes, sir; and approved by him.
Senator Hale. And approved by him?
Doctor Sawyer. And approved by him and his chemist. Senator Hansbrough. Let me ask you whether that denaturant can be manufactured in unlimited quantities?
Doctor Sawyer. Yes, sir.
Senator Hansbrough. So that it might be used as a general denaturant by everybody?
The Chairman. You could only use it, I suppose, in tobacco manufacture, on account of the nicotine. They could not put that into everything, I imagine.
Senator Hansbrough. You could put it into alcohol that was to be used as an illuminant, or for fuel purposes, because the object is to make it undrinkable.
Doctor Sawyer. It could be used.
Mr. Felton. It would make it decidedly undrinkable.
Senator Hansbrough. That is the cheapest denaturant I have heard of.
Senator Hale. And unsmellable, and everything else.
Mr. Felton. It does not smell very bad.
Senator Hale. It does not?
Mr. Felton. The doctor has a sample here.
Doctor Sawyer. Here is a sample which has been denatured with this material [exhibiting sample of denatured alcohol to the committee].
Mr. Felton. Everything that we desired has been approved by the Commissioner except the one item of proof.
Senator Hansbrough (referring to sample of denatured alcohol). Has that 1 per cent of your denaturing agent in it?
Doctor Sawyer. That has 1 per cent of our denaturant.
Senator Hansbrough. This is the double strength—180°?
Doctor Sawyer. Yes, sir. The object of adding the nicotine is, of course, to make the alcohol undrinkable. We have in what would be an ordinary drink an amount of nicotine that would make a man good and sick, and we put in, in addition to the nicotine, the aniline colors, to warn a man that it is not something that is intended to be drunk.
Senator Hansbrough. Do you not regard that as the cheapest denaturant that is being used or likely to be used?
Doctor Sawyer. I think that is the cheapest, and I think that in many respects it is most nearly an ideal denaturant I think that it is fully as efficient as any of the general denaturants that have been recommended, in spite of the fact that under the regulations as they now exist this is permitted to be used only as a special denaturant where records are kept by the manufacturers of the amounts bought and used.
Senator Hale. All that is regulated by the Commissioner?
Doctor Sawyer. All that is regulated by him, sir.
The Chairman. Is that all? We will have to go ahead, because we have not very much time.
Senator Hale. Yes; I think we understand the gentleman’s position.
Senator Burrows. What do you say about wood alcohol as a denaturant?
Doctor Sawyer. I think myself that wood alcohol is not nearly so efficient a denaturant as this material, because, in my opinion, wood alcohol, when mixed in the proportions called for under the regulations, does not impart nearly the nauseating character to the denaturized alcohol that this proportion of nicotine would. It makes it smell worse; it gives the man who might drink it more warning, perhaps; but the final effect upon the drinker would not be nearly so pronounced as that of our denaturing agent.
The Chairman. We will give you and Mr. Felton a copy of this testimony, and you can extend it or enlarge it as you see fit. Perhaps we had better hear the ether people now. We would like to have the Commissioner here when Mr. Woolner and his friends are heard upon the bill and their objections to it. Perhaps we had better hear the ether people next.

New England Rum, Briefly Too Fine To Drink

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

Letter from the President of Felton & Sons (Inc.), Boston, Mass.

Washington, D. C, May 12, 1921. Hon. Andrew J. Volstead, Chairman Judiciary Committee, House of Representatives, Washington, D. C.

Dear Sir :

As rum distillers at Boston, Mass., now engaged in the production
of high-proof rum for industrial uses, we beg to request that such correction be made in the second paragraph of section 2 of H.R. 5033, now pending before your committee (p. 2, lines 3 to 14), as will avoid interruption of our necessary production of industrial rum.

The rum which we manufacture is produced at from 150 to 160 degrees or proof; that is, the rum contains from 75 to 80 per cent of alcohol by volume. The rum is not, however, fractionated to the point where it contains from 94 to 95 per cent of alcohol by volume, which is the usual strength of commercial alcohol. Rum for the purposes for which we manufacture it must retain some of the congeneric flavor which would be fractionated out of the product if the extreme fractionation were attained.

This rum is exclusively used domestically for flavoring tobacco; that is, the rum is sprayed over the tobacco, the alcohol evaporating and leaving in the leaf during the course of manufacture the desired rum flavor. This is one of the ancient tobacco flavoring processes, and our company has furnished rum for this purpose for many years—long antedating prohibition.

The rum for domestic uses is denatured with nicotine and rendered unfit for beverage consumption, and this denaturing work is done in our own denaturing bonded warehouse adjacent to our distillery.

What we are particularly concerned about is, however, our right to manufacture this character of rum not only for domestic use, denatured as stated, which we do not understand is affected by H. R. 5033, but particularly our right to manufacture this product for exportation.

We have long enjoyed an export trade in this character of rum with foreign tobacco manufacturers, who purchased this rum from us on account of its particular character for the flavoring of tobacco abroad in the same way that our domestic manufacturers used it. We do not, however, denature this export rum, as it is exported free of tax. and denaturation is not necessary to secure this tax-free export privilege. Our foreign buyers are accustomed to using this rum undenatured, or else denatured in their own country under the local requirements. Our foreign customers object strenuously to the rum denatured with nicotine and would find other sources of supply if we were unable to furnish them the undenatured rum which they have been accustomed to receiving.

You will realize that this rum is exported for nonbeverage and industrial uses, and no question of this particular kind of rum being used for beverage purposes in foreign countries can arise. Rum at cheaper cost than ours can be secured by the foreign countries for beverage purposes, and rum of the cost and character of our product could not, as a commercial proposition, compete for beverage purposes, even though the foreign tobacco manufacturers, who are customers, were inclined to consider our export flavoring rum from a beverage standpoint. Of this there is no possibility, because our foreign customers are large and responsible tobacco manufacturers, who buy our product solely for use in the preparation of their tobacco.

For your further information, practically our entire list of foreign consignees are subsidiaries of the British American Tobacco Co., and we know that they use this rum exclusively in their foreign tobacco factories. It may well be said that the operation to which we refer would in no way be interfered with by the second paragraph of section 2, but it would be a disaster to us, if under any circumstances, we were not permitted to continue our production for export purposes under the circumstances above stated.

An amendment which will make this clear and certain would consist of the words “including rum for industrial purposes” after the word “alcohol” in line 5 of page 2. This would make the exception read, “save alcohol, and rum for industrial uses.”
Respectfully,

Felton & Son (Inc.).
Boston. Mass.,
Per Herbert L. Felton,
President and Treasurer.

 

Specific Gravity and You

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

⊕⊗⊕⊗

After my last “high flying” post on why American whiskey is so problematic, I thought I’d bring things back to earth and teach some foundational concepts. This lesson was part of my consultancy, but my time is a little pressed so I’m not exactly out marketing it anymore. What is specific gravity and how far can we stretch measuring techniques to harness it?

I’ve long preached to distilleries that they should make a bunch of very small scale secondary products. Most all these business school types turned distillers think it is a terrible idea. It will dilute their core product, not strengthen it like I propose. It will confuse their sales efforts. It will confuse their investors. What no one seems to admit is that they have near no clue what the hell they are doing on a technical level and they need to practice on stuff. They also need to enrich their retail businesses plus benefit from new products having PR synergies with their core products (this last point is more powerful than anyone realizes). Many operations also need new retail scale products to help them retain top talent. I do not work in a distillery because no one has figured out how to properly pay me.

Before we get into it, a whole category of products simply does not exist (in practice) because firstly there are no dreams and secondly most new distillers have not figured out how to accurately vat complex multi component blends. I’ve seen distillers so frustrated by proofing that they bought bench top Anton Paar densitometers for startling money while their labs had near no other analysis equipment. Most new liqueurs are nothing but mono, no doubt both because of a lack of dreams and technique. Our understanding of vatting has not advanced an inch despite 10,000 bitters producers working in the territory. Whats up with that?

Specific gravity is the density of a substance compared to another which in most all cases is luckily just water. It doesn’t have to be water, but another reference might only be used in petro chemical industries and may be a yesteryear concept now that analysis procedures are different.

Specific gravity is basically density which is mass/volume. g/L

If you know the density, the mass can tell you the volume and vice versa. Distilleries typically use this with quite large scales weighing entire barrels to gauge them. This also becomes conversely very useful on the small scale or anywhere in between when the containers become tricky. There are techniques to measure the density of mere drops of essential oils.

A hydrometer is the distiller’s go to specific gravity tool, but it is often the least appropriate option. Cheap, fast and good, pick two. Hydrometers are cheap and you can own a ton for a fraction of the price of great scales. You can stick one in a fermenter and get a quick reading without making a mess of glassware. You can stick a hydrometer in a still parrot and get inline continuous measurements that can become actionable such as starting or stopping a run. Hydrometers typically, however, will never give a lot of significant digits.

Refractometers are a tool we should quickly get out of the way. They convert refractive index measures to either density or related measures. They are not exactly cheap, but they are fast and can work in challenging circumstances. They can also take a single drop and give you actionable advice such as when to harvest a crop. They do not provide many significant digits. I have low and high brix scale refractometers, but I use them far less than I used to. You cannot use them on alcoholic solutions.

The fine coffee scene has been loving digital refractometers lately, but it may not be their best option. Or actually it may, because of how companies like VST have made the advice so actionable (they even have an app!) Refractometers for coffee require filtration because particles obscure and haze the reading. Coffee is typically sucked through a syringe filter before it is put on the refractometer. Another method very useful to the distiller may actually serve the coffee scene well but so far it is not widely explored and we’ll get to that (I actually have a rare 1970’s text called The Coffee Hydrometer that I’ve been meaning to digitize).

The most accurate tool a distiller can use probably isn’t legal with the gaugers and that is why it is not practiced for tax work like proofing. The revenuers have long endorsed certified hydrometers and certified thermometers, but they are not exactly the most accurate.

The most accurate way to measure density may be with the specific gravity bottle (pycnometer) and a very good scale (and thermometer!) which is what many spirits researchers used in the old school. The bottles come in various sizes and are designed to hold very precise round number measurements (at 20°C). The bottle is filled to its neck and a special stopper forces excess liquid up a tube so at the top of a narrow aperture it hits 1.000 liters or some such number with confidence. Cheaper brands I’ve bought were never accurate (or my temp was wack?), but you can still calibrate them yourself though next time I’m going to spend money for quality. When your volume measure has significant digits your density measure is only limited by the quality of your scale. My favorite scale vendor is Old Will Knott. I’m glossing over temperature, but modern sous-vide immersion circulators make it much easier to control for. If you need all the significant digits, a liquid can be held at constant temp before it is put in the pycnometer and weighed.

I have done a ton with scales. Remember, I developed the idea that you can weigh carbonation for sparkling beverage production with a kitchen scale.

We can walk all those pycnometer concepts down into practicality. An outstanding distillery tool is the 5 mL automatic pipettor (5000µl). They are about $70 and can be paired with a $100 jewelers scale to get many significant digits. Their repeatability is excellent and can be tested. A portion of liquid can be put on a scale and the pipette tip primed then liquid zeroed (youtube is full of technique). A 5 mL amount can be removed twice to prove repeatability and get the measurement into base ten (10 mL) so density is easy to calculate.

Density should be recorded constantly in competitor analysis scenarios. Basically everything that comes through the shop. With the printed alcohol content, sugar content of liqueurs can be extrapolated or the slighter measure of obscuration investigated. This is important for vintage spirits where you want to get an idea of either sugar content or obscuration, but you don’t want to destroy a large sample. With a density measure and then a 5 mL sacrifice to dehydration lots of vintage spirits can be investigated for alcohol content in their current state and obscuration in their pre-ullage original state (Weigh the bottle before you open, weigh it again after you drink and empty it. Coupled with the specific gravity, you’ll know its volume in its present state and not mess with your good drinking. Never put that stuff in a graduated cylinder). So much vintage booze is being consumed where we would all benefit from rudimentary 5 mL sacrifice analysis projects.

The pipettor process will likely work for coffee quite well with no filtration. The 5mL pipettor can also be used to fill tasting room glasses for nosing and gratis scale samples. The pipettor with its digital scale can also be used to rapidly assemble different generation of vatted products in 100 mL or less batches. Precision at 100 mL means you can quickly assemble ten prospective generations of a recipe for assessment progressing a single variable at a time. You are left with no reason to not see ideas fully elaborated. I also create sketches, but more on that some other time.

The most profitable idea I’ll share is the rule of 1.587 which is the density of sucrose (or 1.59 if you don’t need that many significant digits). The density of sucrose can reveal how much volume a mass of it takes up and thus reveal other measures we need to hit certain targets.

If we are making an Amaro that we know we want to have 280 g/L of sugar and 24% alcohol, what do the parts look like? What volume will the sugar take up? 280 / 1.587 = 176.43 mL. So the sugar free rest of it has a volume of 823.57 mL. Now how much alcohol does that start with if it is going to be diluted by sugar to 24.00% on the revenuers nose.
(823.57 * X) + (176.43 * 0) = 1000 * 24.00.
(823.57 * X) = 24,000
X = 29.14

That 823.57 mL is going to be a vatted collection of individual concentrated components. As they take shape, they can be shifted, subdivided, even combined. Certain components may bring a sugar content that needs to be deducted from the 280 such as a fruit juice. Pretty soon you’ll have a spread sheet.

Some components may exist in such small quantities that a hydrometer just isn’t going to work, but you still should know the specific gravity of everything so the SG bottle or pipettor must be used.

Now you have to scale it up. Sometimes this is to roughly five gallons (tasting room) and maybe to 500 or so gallons (wholesale). You should have a plan for the order of operations in which you combine components that harnesses all your available scales to quickly get you to a target with confidence. Proprietary narrow range hydrometers could be used to quickly check your work (and check off sheets made in case the phone rings and you walk away, but SG knows all). Eventually a final check has to be made and a plan for correction. The final point of concern is percent alcohol to satisfy the revenuer so either water has to be added or concentrated ethanol. The added sugar should be very easy to hit accurately so the error is most likely with the alcoholic quotients. Any addition to average up or down the alcohol content will have to preserve the sugar content so sugar might need to be added to your bump.

These operations should be practiced at different scales and employees should be given sample puzzles to solve before they risk expensive ingredients. This is basically the premise of my distillers workbook exercises.

Elaborating a vatting procedure can keep you safely away from all in the pot cooking and push you firmly into the progressive process. Fragmentation of the product is literacy in the product. Ideas can move towards deeper involvement.

The amaro challenge can push beyond mere assembly for a distiller and into wielding special effects to create sensory differentials and tone refinement to push expressions from ordinary to extraordinary. Every distillery should have an Amaro and it should be a measure of their relationship with beauty and capacity for abstraction.

None of this is too complicated, but none was spelled out in educational books for distillers. Modern texts only teach the maintenance and continuation of large scale products, not the origination of small scale products. I have used this all to develop two notable products on the market that have done more than $300k per year in wholesale revenue. One is more than ten components while the other is merely three, but extrapolated all the way from a single cocktail to a nearly 250 gallon batch. I’ve developed countless others that exist only as one-offs or as proof of concepts in the event extraordinary source materials become available.

Good luck!

As far as data tables goes, for the specific gravity of sugar solutions, the data table I’ve used the most is C440. For ethanol solutions, it comes from a text because most do not have the full range at the lower ethanol contents which becomes important to certain types of work. Your vatted projects may never require charts, but you will definitely need them for competitor and role model analysis when you want to become hip to the common structures liqueurs and amaros take. If you use a great resource, please share it up.

Who is Dante and Who is Virgil and the Value Proposition of Bourbon

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

⊕⊗⊕⊗

This really took a left turn as I worked on it and crammed in some other concerns I’ve been having. Its been dawning on me that the spirits industry has a tenuous relationship with beauty. When Arroyo used complex pH buffering on a rum wash, he was making his spirit more suave. When Bourbon producers adopted similar methods they were making a spirit that would merely mature faster to squeeze out value.

What path do you take when you’re a new distiller? And how can we mature the new scene so it compares to the better aspects of fine wine production culture? I think we need to put beauty at the center of things and build science around it. Things should flip so beauty is distiller driven and not merely reliant on drinkers.

The drinker with most distillers. Who is Dante and Who is Virgil is not what you’d think.

In my last few posts on American whiskey I described the reign of a generation of practical distillers who built their whiskeys like a brick house so the next generation of scientific distillers and their financiers would have a strong value proposition for buying them out. This was all supported by tax structure, production processes, and the fact that barely any producers even drank the stuff. We are certainly in a new era (that I’ve even named guided traditional processes), but the investigation did deflate a lot of my romanticism for American whiskey times of yore. I didn’t find a lot of concern for beauty.

Beauty is the composite of extraordinary sensoriality and exemplary human behavior. –Leonard Koren

Today I present two papers that support the value proposition theory and shed details on the stripping of Bourbon. Don’t let me seem too pessimistic, a lot of this could be improvement. Whiskeys of the practical era were not built to be their progressive best, instead they were practical. The passing of the torch saw a lot of improvement and we can only start to ask specific questions on what lines they crossed and where.

I don’t explain, I explore. -Marshal McLuhan.

The first paper is Whiskey Losses During Aging (1942) by the Seagram’s team of Milton Gallagher, Paul Kolachov, and Herman Willkie.

The second paper is Whiskey Aging: Effect of Barreling Proof on the Aging of American Whiskeys (1959) by the Hiram Walker team of C.S. Boruff and L.A. Rittschof. Remember, this is from many years later, but C.S. Boruff was the condescending scientist with horrible disdain for the practical distillers.

The beginning of the Seagram’s team paper even starts with the claimed savings of $750,000 over three years. Their main methodology of capturing the savings was to reduce the angel’s share and gravitational leakage. They did this by control for temperature in the warehouses and dropped it fairly significantly. They also controlled for humidity. Finally, what seems practical, but was overlooked in the old school by their claims, they increased scrutiny of barrel quality and were better about checking for leaks.

I just reread their paper and it is really enjoyable. Anything Willkie and Kolachov touched has been really good. When I’m down on American whiskey they inadvertently build it back up. They describe how foolhardy and extravagant it is to store your whiskey in such poor containers, yet we do. The excess and inefficiency of whiskey makes it basically art and probably most like a poem when you consider the similarities roundabout processes. It is a unique type of art, because its our art, that of the drinker. We are its patrons and it was commissioned by us. Who some think are the artists, are not. They are reluctant, often do not touch the stuff themselves and have a disdain for the poetic flourishes we want.

The paper moves on to describe the Carlisle Tables from the “80’s and 90’s”. These are tables of allowances for soakage and evaporative losses, but they are described as inaccurate and in need of updating. The system as it was made them pay taxes on nonexistent whiskey because the losses experienced were actually higher than what was provided for in the tables.

Therefore, the distilling industry must make the best of a bad situation. Every opportunity must be taken advantage of to reduce whisky losses during the warehousing period.

Flavor be damned! I myself am an artisan and I get commissions I often don’t agree with. I kick and scream as I execute them. My work (please share) is nothing profound. Recently a self designing home owner, the artist, gave me an 1890’s Corbin door set to strip and polish. Well, I’m in the Wabi Sabi camp. The century plus old patina was stunning. This artist and I were aesthetically opposed. The symbolism of impermanence plus the extraordinary sensoriality of patina are something more profound than the puritanical morality of ordinary polished brass (me versus them). They got charged ambitiously for violating all my life principles, just like y’all get charged ambitiously by whiskey makers that have a disdain for your wasteful decadent aesthetic.

We poets make Homeric offerings to our angels and let the oak also take a drink and they just don’t get it. The IRS has to step in to protect our speech from being squashed. All the sudden, we have new producers that actually like making whiskey and there is no kicking and screaming, and to be honest, for some reason, I’m just not into it. If you’re an artist that wants a stronger more straight forward bond with your artisan, drink rum (I actually say that idly, just to tease you).

The Seagram’s paper is great and even shows a little data on different tiers of whiskey stacked six high. Their modernization started in 1939.

The temperature of 55°F. was arrived at from two considerations. One was the fact that men in the warehouses do not work effectively or with any degree of comfort if the room temperature is much below 55°F. Another consideration was the possible decrease in the aging rate at the low temperature. The effect of temperature on rate of aging has always been the subject of discussion in the distilling industry. It seems logical to believe that aging proceeds faster at somewhat higher temperatures. Yet no controlled experiment has yielded conclusive data.

What is cool here is that even as man tries to dominate the terroir of whiskey storage with refrigeration, it cannot escape human terms. The crew must be literal blue collar comfortable. The industry hides this kind of detail from us, because they know that we as patron’s of the arts wouldn’t be happy. I’m glossing over some details. They actually let it get warmer than 55°F in the summer months. They do however go on to describe a 2500 barrel experiment in progress where the whiskey is kept at year round temperature of 50°F.

The impact of humidity worked very different from what I would have thought. Changes in humidity do not effect evaporation so much as tightness of the barrel joints. High humidity being not so terrible, but hard to maintain so it stresses the joints and creates leakage that way. High humidity was also tied to mold growth and sanitary conditions which probably has a bigger impact on the workers than it does on the whiskey.

A communication with the U.S. Forest Products Laboratory is acknowledged which is the government organization where I obtained the paper on Whiskey Aged in Plywood Barrels. This also brings us back to Public Foundation for Private Spirits Companies.

The care which barreled goods receive during warehousing was intensified. The practice in the distilling industry is to inspect every barrel of whisky periodically throughout the storage period. This inspection period was shortened so that each barrel is inspected every ten calendar days. Inspectors on these ten-day cycles repair minor leaks, patch cracked staves, and generally perform preventive maintenance. In cases where the leak is too large to repair in passing or a head is badly buckled or a cracked stave shows probability of leaking, these barrels are removed from the racks and the defective parts are replaced with sound staves or heads. In addition, newly filled barrels are inspected for leaks daily until they have been stored for two months. From then on they are cared for in the ten-day inspection cycle.

This could be looked upon as more Puritanical neuroticism, but it is hard to argue with. This type of spillage is not an offering. A buckled barrel is not a happy barrel. This also makes me wonder what new distilleries are doing. They obviously encounter these same challenges, but do they have any minor coopering skills?

To get an idea of the monetary saving represented by this decrease in excess loss, a calculation was made to show what the excess taxes should have been if the rate of excess loss had remained at 0.70 proof gallon per barrel. During this three year period 729,536 barrels were tax paid. If these had each been 0.70 proof gallon excessive, the quantity of nonexistent whisky subject to tax would have been 510,675 proof gallons. Over this period the rate of tax varied from $2.25 to $4.00 per proof gallon. Thus, the tax collected on nonexistent whisky would have been $1,425,256. From actual figures during this period the excess loss was only 272,917 proof gallons. Figured at the same rate of tax, this quantity of loss was taxed $725,328. Thus the saving of excess tax was $699,928. In addition, the actual whisky saved was 237,757 proof gallons. Figured conservatively at $0.30 per proof gallon, this saving was worth $71,327. Thus, it can be said that the value of the change amounted to $771,255, roughly three quarters of a million dollars, over the past three years.

The value proposition now has numbers and they’re big. You tell this to your finance guys and it all the sudden makes sense to buy up a bunch more distilleries and squeeze them. What did we gain and what did we lose?

The next paper is from 1959, but represents work that started eight years prior. It immediately raises some I don’t know how I feel about this.

Three whiskey distillates were barreled for aging at 1 10 (control) and distillation proof. Experimental barreling proofs were 118, 127, and 154. During 8-year aging in new charred oak barrels the percentage losses of whiskeys barreled at proofs above 110 were slightly lower than the controls; the tendency was not statistically significant because of the relatively small number of experimental barrels. Chemical characteristics developed during aging of whiskeys barreled at 118 and 127 proofs fell within normal limits, but at 154 proof were lower than normal. Flavor after aging 8 years was normal in the whiskey barreled at 118 proof, slightly less mature at 127 proof and different at 154 proof because of a spicy green oak taste. An industry-wide experiment is now under way.

Uh, industry-wide? I cannot opt out? I have to wait for Wild Turkey to start up to find an artisan I trust to commission my whiskey art? Are any of you even familiar with Tom Marioni’s The Act of Drinking Beer With Friends Is The Highest Form of Art. There is a rigorous conceptual foundation for all of my beauty and who is the artist arguments. I actually called up Tom on the phone many years ago to talk about conceptual art and cocktails. Many renowned painters and sculptors use studio assistants who end up doing a lot of the actual painting and the sculpting.

Liquor turns out to be no different. I drink both heavily and very discriminately thus commissioning a lot of works. These Bostonapothecary writings also pull a lot of puppet strings and so many distillers reading these writings inadvertently become my studio assistants. If we stretch it conceptually, so many are underneath my benevolent educational wing (muhahaha). I’m even going to commission more works when I teach a new skill set coming up that I’ve been holding out on people.

The grasping point here is that I’m both empowering you and liberating you. Drink consciously and become the artist. It is open to anyone. And watch your studio assistants. They can be a bunch of penny pinching dorks. They have no vision, they need the artist. If left to their own devices they come up with marshmallow vodka and cherry bourbon.

Well, back to the second paper, this C.S. Boruff, I just don’t trust the guy. He would sell you that stretched cocaine at the regular price. Don’t bring him into my studio. Read it for yourself to see what I’m talking about. Look what happened to the Hiram Walker liqueurs before the cocktail renaissance and still largely now. All the artists were gone. With no drinker driven vision to keep them honest, the Hiram team was left to their own devices and of course they ran it into the ground. When I keep saying guided traditional processes, who is Virgil?

Research Bulletin No. 5 and the Republic of Rum Letters

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

⊕⊗⊕⊗

Lately there is growing interest in the work of, Puerto Rican agro chemist, Rafael Arroyo, and many are discovering my hosted collection of his lost works from a few years ago. Few realized Arroyo wrote so many journal articles because he is best known for an elusive book called Studies On Rum: Research Bulletin No. 5. Not many copies still exist because it was printed on such cheap paper that all copies are literally crumbling.

I have a wonderful scanning of this work, but I acquired it well after I started hosting the journal articles. By then there were many thousands of reads and downloads, but near no comments. This blog has wild readership stats for being so niche, but generates very little dialogue. Open hosting, a part of open culture has not exactly led to the open community I hoped for which is something that older generations of distillers enjoyed.

I made it known in that post I had a good scanning and after many months someone actually took the time to write me an email, tell me about their project, and ask about my scanning. Of course I shared it with them. But I told them: Only share it if someone asks, but of course share it! Do not volunteer it. Offer to discuss it. Create a Republic of Letters and not a society of lurkers. Pass on those same rules. In two years I’ve only gotten 15 requests, but from around the world. We’ve had great conversations on successes, failures, and ideas to try. Very cool things are happening, keep an eye on South Africa.

A notable recommendation to participate in the Republic of Rum Letters: write emails and comment directly on blogs. Avoid facebook and twitter because they are too ephemeral and all the great discussions get lost (FB is the biggest offender). Ask questions. Avoid hero worship. Contact very old writers. Recognize that we’ve all barely scratched the surface and truly know very little.

I don’t aim to control the book and it is pretty much redundant with all the journal articles, but the approach has started tons of great dialogue and I’ve learned a lot. I’ve read the book a few times and even wrote multiple articles on Arroyo and specific topics within Studies on Rum. The best passages, the stuff that would amuse and excite the rum drinker are all fully quoted in these articles.

The Prior Patents of Rafael Arroyo
Rum Comparatively: Understanding Anything Goes
Rum, Mitogenic Radiation & The Bio-photon
Cape Verde and Sugarcane Juice Rum Categories
Team Pombe and the Yeast Olympiad
Rum, Osmotolerance and the Lash
Aroma Breakage and Rum Design
Ageing, Accelerated Ageing, & Élevage ==> Lies, Damn Lies & Statistics
Arroyo’s Oidium

I don’t think a single article above has even gotten a comment.

I’ve put Arroyo down for a while, but I have been concepting a distillery analysis laboratory based on his ideas plus everything I have read that came after. I aim to create an affordable, holistic, organoleptic, human centered analysis system for product design and eventual quality control that can generate actionable advice. There is no GC/MS. It aims to be more like a vinyl DJ; admired, marketable, and effective. Seductive, but non actionable technologies are ruled out. Fine winemakers perform tons of analysis but don’t get too advanced. They are human centered.

The system can also be integrated into brand marketing and story telling better than more technologically advanced methods. The budget is looking like $30K and it also encompasses my gin lab based on the original 1940’s Seagram’s botanical assay procedures I recovered.

I’m working on it.

That Crazy (or not so Crazy) Koji Corn Whisky

Sponsor my distilling work simply by sharing the artisan workshop of the Bostonapothecary on social media. Copy, Paste, Support!

⊕⊗⊕⊗

My introduction to the idea of Koji process whiskies came from an awesome reader who sends me great papers he finds. Its a whopper of a story complete with a secret efficient production technique, monopoly ambitions, horrible anti competitive behavior, and a little bit of mobster strong arming. That was the turn of the century century (maybe) and it didn’t pop up again until the 1960’s research I just put out in American Whiskey by the Numbers. Only one distillery, no. 40, was making a corn whiskey with the process and they didn’t make any other kinds of mashes unless they also produced neutral spirits that might have escaped the report.

So the eccentric seeming process survived! But is there anymore to the story? Was it ever a way back fad? Do we see it by degrees in anyway today? Was it ever used in a fine context or was it only relegated to commodity junk?

To start, the idea is widely known, and could be said to be a home distillers fad, but probably not connected to its root history. Quite possibly the lineage of the idea was broken and brilliant home distillers quickly reinvented the old wheel.

Three papers have turned up and it is important to throw them on the easily searchable historic record returning it to people so they can understand and contextual what they are doing, not doing, or if they are a Momofuku devotee, naturally what their next business venture will be.

The first paper comes to use from Dr. Jokichi Takamine himself in 1914 from The Journal of Industrial and Engineering Chemistry.

Enzymes of Aspergillus Oryzae and the Application of its Amyloclastic Enzyme to the Fermentation Industry.

This article is very cool and very readable adding to our timeline of the processes beginning. He does not betray his mobster monopolists or possibly this is where he was recruited.

Takamine defines Taka-Koji (named after himself!) and differentiates it from Japanese Koji which implies a culture grown on steamed rice. He also brands an extract of Taka-Koji Taka-diastase.

This article actually gets kind of awesome and I wish more papers were written with his tone and style. Takamine encounters failure, reflects and then returns to repeat experiments with new ideas. He even constructs an apparatus from a mason jar and a clock mechanism to revolve it like a drum! Hence the drum technique.

I don’t want to take away Takamine’s voice but he notes (and at length quotes) a Hiram Walker collaborator duplicating his work in Canada and presenting his findings to the Congress of Applied Chemistry so this idea was no quiet fringe finding. It is a great summary and I like it because it explains how they conducted their first experiments. This may help and inspire a small distillery to give it a one batch go for a special barrel.

“On account of the numerous great variations in the price of barley malt (in two consecutive years the price varied 100 per cent), it would be of great value to the distilling industry if a converting medium of moderate and more uniform price could be employed instead of barley malt. Eliminating, therefore, the different grains as a source of converting medium, I turned to the diastase produced by a microorganism, the Aspergillus oryzae. Takamine was the first to introduce the Koji process in America. As far back as 1889 he advocated the use of Koji in the distilling industry. Instead of growing the fungus on rice, Takamine employed a material far cheaper for this country, namely, wheat bran. An extract of the wheat bran, on which the Aspergillus oryzae had been allowed to germinate, contained the diastase, produced by the Aspergillus, and this extract was mixed with the mashed grain, bringing about the conversion of the starchy materials. Lately, I understand, he has succeeded in adapting a modification of the Galland-Henning malt drum system to his process. This should be a great improvement over the old floor system, in so far as it makes it possible to work under absolutely sterile conditions. For my experiments I decided to use the Taka-Koji itself instead of the diastatic extraction of same and add it to the mash in the same way as malt. Before beginning the practical experiments in the distillery, laboratory experiments were conducted on a small scale to ascertain the amount of Taka-Koji which was necessary to convert a certain amount of starch into sugar, and also the optimum temperature at which to conduct the conversion. It was found that 4 g. of Taka-Koji was sufficient to give a complete conversion in a mash made from 96 g. of corn and rye, the corn containing 15.o per cent of moisture and the rye 14.0 per cent. Three experiments were made in the distillery. For the first experiment only a 14 gallon can was used and a portion of our ordinary mash from the mashtub was employed, the mash being taken from the main mash just before malt was going to be added for conversion. The second experiment was performed on a somewhat larger scale. Instead of using mash material from the mashtub, the mash was made separately. It consisted of 500 kg. altogether, of which 20 kg. were Taka-Koji. The third experiment was performed on a good-sized working scale. Two mashes, each consisting of 3,401.94 kg. (of which 131.j kg. were Taka-Koji), were prepared. The two mashes were filled in Turn No. 25 of Friday, May 26, 1911. Turn No. 25 was distilled separately and the yield was 36 liters of 100 per cent alcohol per 100 kg. of mash material, just a trifle higher than the yield of the other mashes which were made the same day. In judging the adaptability of Taka-Koji for use in distilleries several questions must be asked and answered:
“Is Taka-Koji capable of giving a complete conversion of the starchy materials in the mash?
“Yes, 4 per cent of the air-dried Taka-Koji will in 15 to 20 minutes give a complete conversion of well prepared mash material.
“Is the fermentation a satisfactory one?
“While it is accompanied by a strong odor, which is prevalent in the fermenting room, the fermentation, however, is very rapid and complete, and on this account should give rise to the least amount of infection.
“Is the yield of spirit satisfactory?
“Yes, the yield obtained was a little higher than the yield gotten from the barley malt mashes, although the total fermentable extract available in the mash material was less. The yield of 36 liters of 100 per cent alcohol per 100 kg. of mash material is of course only a comparative yield. In distilleries which employ cookers and boil the corn under pressure, a higher yield would naturally result.
“Therefore, I should say as a final conclusion that in distilleries which make commercial or potable neutral spirit, the Taka-Koji process could be introduced to advantage. Aside from a probable higher yield in spirit, the saving in malt bill would be worth while in years with normal malt prices and very considerable in years when the malt prices become abnormal.”

Questions arise immediately. Is the aroma pleasurable or the product of ordinary off-aromas? Would the aroma have market now that we live in a world of mezcal and funky rum fetishes? Can a one barrel product fine rum product be justified? Who knows, but more importantly who is qualified to find out? I want to drink it, but the discovery may have been colossally important to the product of industrial and fuel ethanol. I hope Takamine lived long enough to profit and see the fruits of his labor.

The next paper is from 1939. Saccharification of Starchy Grain Mashes for the Alcoholic Fermentation Industry: Use of Mold Amylase.

This paper is kind of cool to breeze through. First we learn

The authors prefer to use the term “amylase” since it avoids confusion that sometimes results from the fact that “diastase” is the French term for enzyme.

Then we learn more of where the Takamine-H. Walker experiments ended up.

Use of mold preparations to replace malt in the fermentation industry was suggested by Takamine, and large-scale tests at the plant of Hiram Walker and Sons, Inc., in Canada in 1913 (9) proved entirely successful, yields of alcohol being better than with malt. However, a slight off-flavor or odor was produced in the alcohol, and since the flavor is of paramount importance in beverage alcohol, Takamine’s preparation has not found favor in the alcohol industry, Now, however, with the increasing interest in power alcohol, it would seem that a procedure similar to Takamine’s should hold much promise for production of industrial alcohol.

They go on to imply the Hiram Walkers process was private and with interest in industrial alcohol it would be beneficial to experiment and make a publicly known process available. We used to see more of this publicly funded research aimed at aiding private enterprise and generating competition. The acknowledgements at the end do imply a private grant.

What I want to know is what were these aromas like? Reminiscent of baijiu? Sweaty feet and bubble gum? Are any home distillers coming to an off/aroma-negative conclusion or is it avoided if an extract of the enzyme is separated from the moldy bran?

Their experiments gets into finer details and provides best bets for anyone wanting to play along. They do not return to the subject of the aroma because they are interested in non-potable alcohol. Their bibliography has a bunch of Dr. Takamine’s patents which go back as far as 1894.

The third paper is from 1949 and also published in the Industrial and Engineering Chemistry journal (which has published lots of other great works on beverage distillation). The research was conducted at the Northern Regional Research Laboratory, Peoria, Ill.

Grain Alcohol Fermentations: Submerged Mold Amylase as a Saccharifying Agent.

First off we should note that Peoria was home of distillery no. 40! The introduction makes it seem like they are doing some reinventing of the wheel or duplication of the 1939 experiments and the 1939 paper is in their bibliography but for some reason listed as 1940. The addition here might be the exploration and comparison of an “amylo process”. It is acknowledged that the processes have been already used commercially. Hiram Walker and Sons, Inc, Peoria, Ill and E.R. Squibb and Sons, Inc. New Brunswick N.J. are noted in foot notes. I basically skimmed to the end and found no mention of aroma nor whisky.

To sum it up. Koji is in culinary vogue, but is anything cool and promising happening here? Probably not. Does this have any impact on Bourbon as we know it? Commodity American whiskey may or may not have used percentages of industrial enzymes. I’ve heard murmurs but never read anything specific. I’ll have to keep an ear to the ground. If you know anything specific with a reference, do send it in. Fine American whiskeys likely do not flirt with industrial enzymes. One long shot idea to consider is that ethyl carbamate, a regulated congener comes from malt (among other things). To reduce it under a threshold for trade purposes (it is basically an artificial trade barrier), percentages of industrial enzymes may be used to hit target numbers. Who really knows, that is just from little bits and pieces I’ve read about regarding a barely understood industry topic.

F. I Scard, The Chemistry of Rum

The name F. I. Scard has come up before in a drab paper, Scientific Control of a Rum Distillery. That idea turned out to be slightly more exciting in our recent reframing of Bourbon where we saw that scientific control was something that was significantly aided by onsite excise officers which the West Indies didn’t seem to have in those days. Better control made the collecting of tax revenue much more predictable.

Scard returns with another short paper, The Chemistry of Rum, from 1920. There is some great language in there and some unique factoids.

What might be called the beneficient bacteria of rum, which cause the distinctive flavour, are the acetic acid organism, which produces acetic acid from the alcohol, and the butyric acid organism, which gives from the presence of organic matter peculiar to sugar cane molasses, butyric acid—the same body which gives the characteristic flavour to rancid butter.

We use that rancid butter factoid as common trivia these days, but I’ve never seen it stated that far back.

During distillation the acids mentioned above combine with the alcohol, forming what are known as “esters” or compound ether, and it is these esters which impart the flavour to rum and give it stimulating properties.

I highlight this because Scard mentions stimulating properties. I posited stimulating properties in rum back in my infamous Mezan XO spirits review that ended up with the Mezan XO challenge! Scard was writing before the wide recognition of rum oil as a congener category, to which I attribute the mysterious stimulation rather than esters. Does the logic of his language imply pharmacological stimulation, apart from ethanol, or am I grasping? We have only seen real rum re-enter the market recently so I suggest you drink more to make a better educated decision.

The object of adding sulphuric acid to wash is the produce a certain acidity, thus putting an obstacle in the way of the putrifactive bacteria, which feed on yeast cells, at the same time helping the development of the butyric ferment,  which requires an acid condition for its development. It is the ester formed from this acid which gives the “pineapple” flavour to Jamaica rum. Its presence is essential to all rums, as without this ester the spirit ceases to be rum.

A strong aesthetic pronouncement! Those are rare.

And here we go…

The reason why Jamaica rum contains so much of this body, and is consequentially so valuable, is as follows: The yeast which provides the fermentation in sugar-cane distilleries is derived from the cane itself. The ordinary variety consists of round cellular bodies which grow by budding—that is, one cell buds out from another. This variety, unfortunately, will not flourish when the acidity gets beyond a certain point. When this point is reached—and the production of acetic acid soon brings it about if the fermentation is slow—alcohol production ceases. But in Jamaica there is an especial yeast which will grow in a highly acid medium. Unlike the other yeast, it is rod-shaped, and multiplies by splitting up. The presence of this yeast, therefore, enables the fermentation to be prolonged, and substances such as bottoms, dunder, &c., to be used in the wash, which are favourable to the development of butyric acid.

Here we see the return of our especial hero, Schizosaccharomyces Pombe, which is still not widely recognized in contemporary rum connoisseurship. We don’t exactly know who is using it currently and who isn’t and who was and who stopped. The first person to bring a Pombe rum to the U.S. will have a lot of success. And I’d be happy to help them. There are ways to achieve great ends without a Pombe ferment, but they do not tell such an archaic story of questing Victorian geniuses. They will not be as dank, concentrated, or brick house powerful.

In this connection it may be remarked that the writer on one occasion added butyric ether (ester) to a puncheon of rum in Demerara, which was reported upon in Mincing-lane as “resembling Jamaica”.

There is a lot here besides the admission of fraud. First off, Scard is an island hopper which shows yet again how ideas and know how easily spread between the islands. Everyone was following everyone. Therefore the forces that created style were largely economics, risk tolerance, and responsibility (to process mountains of molasses or not). Mincing-lane was a market for rum and other articles from the West Indies. Lots of tasting descriptors were developed in these markets.

The cane-juice itself is an important factor. Different kinds of canes give a different quality of rum, due, partly, to the case itself and partly to variations in chemical treatment necessitated there in the sugar manufacture. Even the different conditions of the same variety of cane will affect the flavour of the rum. On one occasion some Demerara rum made from very rank Bourbon canes were reported upon as being “green and stalky.” There is therefore outside the ethers specified some bodies present in excessive proportions which come down from the cane itself.

Scard here is arriving at a notion of proto-terroir. He isn’t exactly celebrating variation, but he is noting that variations exist. I’m a little confused by the “rank” canes. These could be moldy rum canes which were prized or be something else. Distilling them could also have been an experiment, and if they were fermented and distilled as a fresh juice rum, they may have had that character on account of not being centrifuged like the fresh juice rhums we know of today.

His closing remarks are nice:

Another agent in flavour is the nature of the still.

Bulletin Relative to Production of Distilled Spirits

Bulletin Relative to Production of Distilled Spirits
United State. Internal Revenue Service, United States.

I came across this wonderful text while researching my last post on mid century, golden era, American whiskey production. The 1912 text is basically a primer on distillation encountered in American distilleries for excise agents who were working alongside the distillers.

It is early and gives a glimpse of the industry before products like Bourbon really took definite shape and consistent production traditions stretched out. There is a picture of an ordinary pot still, a three chambered still and a continuous beer still, but not the Bourbon still setups that we know today.

The text also has a unique tone and mentions what was in vogue in regards to production. A relationship between distiller and excise agent emerges.

The data contained in this bulletin has been compiled and is furnished for the information of all internal-revenue officers, and particularly for the information of those whose duties bring them in touch with the operations of distilleries.

These excise agents had to know what was going on to spot fraud and monkey business, though it is not explicitly spelled out that way.

It is hoped and believed that the information furnished herein, so far as all internal-revenue officers are concerned, removes anything that may be of mystery from the operations of these plants; and it is further expected, and in the future will be required, that every distillery officer shall sufficiently familiarize himself with the simple laws of chemistry and physics involved in the production of spirits so as to understand their application to the materials and the equipment in the plant to which he is assigned.

As I framed in the last post, the IRS had a big incentive to be technically helpful to the industry. In 1912 fermenting to dryness was no guarantee, and if a distillery gained enough control to hit dryness every time, grain purchased would match alcohol produced and the agent wouldn’t have to turn into Columbo constantly unraveling mysteries of what the hell happened. This is probably taken for granted these days now that distilleries do not have live in agents and everyone is on the honor system.

It is not intended that this bulletin shall constitute a primer or a guide to the production of spirits. An effort has been made to give a general description of the various processes in common use, and an explanation of the reason why certain things are done; and, further than this, that the information herein shall furnish a method by which, from knowing what is done, the officer assigned to a distillery can ascertain whether or not the amount of distilled spirits normally to be expected has resulted therefrom.

The relationship between the IRS and the distillers evolved, but for 1912, the last line here is key.

Barley is the grain generally used for malting purposes, because it is considered to have the highest diastatic power of any of the malted cereals. Considerable rye malt is used in the production of an all rye whisky and a little corn malt is occasionally produced and used. By diastatic power is meant the measure of the activity of the malt in changing starch into sugar.

Here is a little fun factoid relating to ryes like the Baltimore Pure Rye.

A certain quantity of water is added to the cooker, about 20 gallons to the bushel (the exact quantity depending upon the ideas of the distiller) ;

I highlight this excerpt from the mashing section because it shows more of the unique tone.

Things get interesting when they describe three different mashing methods with the last being called old sour mash process:

Third, the small tub or old sour mash process. The details vary, but the following is the general process: A certain quantity of hot slop, about 20 gallons to the bushel, is placed in small tubs (capacity about 50 gallons, sometimes more) ; the meal is then added and the entire mass thoroughly stirred with the mash sticks. This is allowed to stand overnight, in the morning it is broken up by means of mash sticks; the malt and rye is then added, in some places without heating the mash, in others after heating to about 160° F., allowed to stand for some time and then sent to the fermenters.
This process does not give as good results in mashing as the open mash tub, because a smaller number of the starch cells are acted on in the process, and a smaller yield is obtained.

The hot slop is backset right out of the still. If it stands over night it may or may not grow lactic bacteria, especially if it is in already infected vats. It would be very cool to try this out and see what happens. My question then is would the enzymes actually have time and ability to act on the rye if it wasn’t heated after being added? Everything has to be back to room temperature after sitting over night.

If I were running a distillery tourism program, I would try and do some interactive exhibits to show we progressed from the most rudimentary processes to what is currently practiced. Create a living history type of thing.

There are three methods of yeasting in vogue: First, to allow the tub to be yeasted by the yeast organisms which fall into it from the air or are remaining in the fermenters; second, yeasting back, or the use of “barm”; third, the preparation of a yeast mash in a quantity representing from 2 to 4 per cent of the grain bill.

The first method is how we think of fermenting wine, but distillation is all about abstraction. Abstract quantities of yeast, beyond what is already present in a vat, are used in near every class of distillate with few exceptions. Arroyo has the best systematic explanation of how this abstraction avenue can be varied.

First method, no yeasting used.—At a very few small distilleries no added yeast (neither mash nor barm) is used. The mash is prepared and placed in fermenters, the distiller leaving the tubs to nature, and as yeast cells are present nearly everywhere, some cells drop into the mash and fermentation begins. As other organisms also develop, this fermentation is a poor one and the lowest yields are obtained from this process. In the early days of the industry this was the general method employed.

It is so hard to believe that anyone would do this, even in 1912, except possibly a fruit brandy producer. He may be describing it in terms of a grain mash just to help his narrative.

Second method, yeasting hack, or the old sour-mash process. After the mash has been prepared in the small tubs, as before described, and emptied into the fermenters, the new mash is yeasted by taking from a tub set the day before and presumably in active fermentation the “barm”; that is, the top is skimmed off, containing a large number of yeast cells, which will immediately begin to grow in the new mash. After this tub has been fermenting 24 hours, the “barm” is skimmed off of it for use in the next tub, and so on. In this method the yeast is less vigorous than in the third method, hereinafter described, because in addition to the race of yeast desired there is an abundance of other types of yeasts and various bacteria which interfere and tend to cause a low yield by a development of other substances in place of alcohol. The longer the process of yeasting back continues the less vigorous the barm becomes, as far as the true yeast is concerned, though it becomes very rich in the varieties not desired.
Finally the tubs will become so foul that a fresh start has to be made by obtaining a quantity of yeast from other sources. In a distillery operating strictly on this plan there would be no yeast tub on the premises.

I’m taking the time to highlight all of these options because it is 1912, Jamaica versus America if you’ve followed this blog. A few years prior Jamaica was writing its great treatise on rum production at its agriculture experiment stations. These explanations are neck and neck and no one really seems to be ahead explaining what they are doing. The state of the art happens to travel fast.

The yeasting back idea is also important to understand because even though it is less efficient in theory it often is more efficient in practice. Massive Brazilian ethanol distilleries using yeasting back because when extra logistics are factored in for their medium, it can produce better results. Yeasting back can also be pragmatic and used when labor is not scheduled to grow a proper culture which takes active time and planning. You can yeast back in a pinch.

The average system of making a yeast mash is somewhat along the following lines : A yeast mash is prepared of malt, or malt and rye and hop water; this will have a gravity of 20 per cent or more; it is stocked with a good yeast and allowed to ferment. At the proper time, after active fermentation has ensued, it is drawn off into jugs of one-half gallon or more capacity. These jugs are used as stock and will keep a month or more before the yeast contained therein will degenerate.
Each day a “dona” is prepared by mashing barley malt and adding a little hop water; this is cooled to the proper temperature and set with one of the jugs ; it is then allowed to ferment overnight or even 24 hours. A yeast mash in the meantime is prepared by mashing one-half barley malt, one-half rye, cooled and set with the dona.
This mash is allowed to ferment overnight or longer and is then ready to add to the fermenter. The grain represented in the yeast mash is from 2 to 4 per cent of the total grain bill for the day (and as all of this grain produces alcohol it should be included in the grain account). In the preparation of the yeast mash at some distilleries another step is taken : After the mashing of the rye and malt the mash is held at about 124° F. from 18 to 24 hours to sour; that is, to permit lactic acid bacteria to develop. This bacteria is not injurious to the yeast, but is an enemy of certain bacteria which are harmful to the yeast. After the souring the mash is either cooled and pitched with the dona or heated to kill the lactic acid bacteria, and then cooled and set (this is called “wine sour”).

The first time I read about the hop water trick they were putting their yeast down a well to keep it cool until the next season. A lot of this is like a cooking show where they put a turkey into the oven then pull another cooked turkey out. If that can’t be arranged, you have to yeast back. The yogurt technique is mentioned here when they create the wine sour medium for their cultures. When you have multiple potential yeasts, one will be suited for the medium, it will grow the best, and that will be your wine sour yeast.

There are four legal periods of fermentation in the United States—that is, the statutes recognize four different periods during which a tub can be filled but once.

That is an interesting way to put it.

First. The sweet-mash, process, in which 72 hours is the maximum time, and 45 gallons of beer must represent not less than 1 bushel of grain.

So the ferment cannot be too long or too dilute. You’d think all the guidelines would aim in the opposite direction.

Second. The sour-mash process, in which 96 hours is the maximum period and in which 60 gallons of beer must represent not less than 1 bushel of grain.

These rules looked like they changed and in the document, 50 years later, there were sour mash fermentations as long as 120 hours. Again, maximums.

Third. The filtration-aeration process, in which 24 hours is the maximum period, and 70 gallons represents not less than 1 bushel of grain. (This is a process in which yeast for bakers is the main product, and alcohol more or less a by-product.)

Fascinating.

Fourth. The rum period, in which 144 hours is the maximum period, and 7 gallons of beer represents 1 gallon of molasses.

You don’t see many acknowledgements of American rum in the literature, but there you go.

For me, and after reading Arroyo, this all raises the question, do you pitch only enough yeast to finish fermentation by your 72 or 96 hours?, or is the yeast done when it is done and the extra time is for action by bacteria and effects of resting? In the document we often saw three different time variations for the same mash bill, but did they pitch different amounts of yeast to create them? Arroyo was big on a resting period as benefiting rum, but he had lots of stipulations. He was also big on explicitly counting the yeasts that you pitched.

Note.—A distiller who desires to use molasses and make alcohol, and not rum, can have his distillery surveyed on a sweet mash period of fermentation and use 7 gallons of beer to represent 1 gallon of molasses. The advantage in the shorter period lies in the opportunity afforded for operating with fewer fermenters.

Fascinating, distilleries were surveyed.

Let’s cover the three chambered charge still in case they come back in vogue:

Charge chambered beer still (see illustration, fig. 4) .—This still consists of from two to four chambers, and is so arranged that each chamber is a unit in itself. The beer is placed in the top chamber and after one distillation the contents of the top chamber is lowered into the chamber below, and a quantity of new beer dropped in the upper chamber. The method of heating is by live steam entering in the lowest chamber. The vapors, consisting of a mixture of alcohol and water, pass from the lower chamber through a vapor pipe to the bottom of the chamber above, these vapors in turn heating the beer in this chamber, boiling the spirit out of it. If there is a third and fourth chamber the same process is repeated. From the upper chamber the vapors pass through a vapor pipe into a doubler, which is a large cylindrical copper vessel, into the bottom of which is placed, at the end of each charge, the heads and tails of the previous distillation. A vapor pipe from the upper chamber enters at the bottom of this doubler, the hot vapors, boiling the heads and tails, pass up the doubler into another vapor pipe, and hence into the condenser. The time consumed in the distillation of one charge is determined by the spirit runner judging by the proof of the distillate. When he is satisfied that all of the alcohol has been boiled out of the beer in the lowest chamber the spent beer is emptied into the spent beer tank and in turn the contents of each chamber is emptied into the chamber below; steam is again turned into the lower compartment and the process continued. It takes approximately 30 minutes to run a charge and there are as many charges as are necessary to distill the beer for that day. These are the stills invariably used at the larger houses in the distillation of rye beers. The distillate of each charge of this still varies in proof, beginning at a low proof, say 40 or more, running up to a maximum of 140 and then down to approximately 10. According to the ideas of the distiller, this distillate is cut off into heads, middle run, and tails. The strongest part of the distillation being classed as middle run. All the middle runs of the various charges distilled during the day are mixed together and called singlings or high wines. The heads and tails of each charge are, as a rule, mixed together and at the end of the distillation of each charge are placed in the doubler of the beer still where they are subjected to a further boiling, and thus the alcohol contained therein is saved and the product called the middle run is kept free of the undesirable substances present in these heads and tails. At certain houses this separation may not be practiced, but all the different distillates mixed together, the disadvantage being that a lower proof is obtained.

This is so attractively archaic and it is easy to appreciate the operators skill and understanding of what they are doing. The chambers quickly become symbolic and recall Wu-Tang. It should be noticed that the charges are dropped (another hip-hop metaphor) before they are fully liberated from alcohol, but when all the drops add up (3 or 4 chambers of death!) all the alcohol is removed. You could stop the distillation when the lowest chamber hits 212° F. I don’t think you could take that measure from the vapor pipe in between chambers because of all the super heated live steam moving through it which would bias the number.

At one time it was a general practice to filter the distillate of the beer still through charcoal filters, or as they are called “rectifiers.” This practice is still followed at several distilleries. Sometimes the singlings are leached (as it is called) and bonded without redistillation; at other houses they are redistilled.

The author, and his unique vantage point, make it seem like charcoal filtration was a trend that moved through the industry at one point. In the beginning it was seen as a way to avoid second distillations, but eventually refined by producers in Tennessee.

The next section of the text is simply titled “Control”.

Nearly all of the larger distilleries keep a scientific control of their operation and production. From the earliest days the Federal statutes made provision for scientific control by the Government, and these statutes, which internal-revenue officers have not availed themselves of generally in the past, will be utilized fully from this time on. The possibility of scientific control lies in the fact that the amount of alcohol capable of being produced depends absolutely on the per cent of sugar in the mash, and this amount of sugar can, by use of the saccharometer, be accurately measured and the amount of alcohol developed by fermentation definitely ascertained; and by intelligent observation, by a competent officer, of the processes followed in any plant, the amount lost in fermentation and distillation closely estimated, and the production that should be recorded as entered into the cistern room closely calculated.

Boom!

Whenever an examining officer visits a distillery he is expected to test the beer in each fermenter and compare his results with those of the distillery officer. If the results indicate that the proper gravity has not been taken and recorded by the distillery officer in charge, the examining officer will make immediate report to the revenue agent in charge, using his judgment as to whether such report should be by writing or by telegraph, and the instructions issued by this office with respect to keeping of Form 88 should then promptly be followed by the revenue agent, and prompt reports relative thereto should be forwarded direct to the bureau.

You are not allowed to be incompetent as a distiller!

Heavy responsibilities devolve on distillery officers and they must be as thoroughly trusted as any class of Government employees. In no other position in the Government is there greater necessity for alertness, competency, and intelligent action at all times. The Bureau of Internal Revenue believes that it is to be congratulated on the internal-revenue officers as a whole. It is the constant effort of the bureau to further raise the standard of these officers by discovering and visiting with severe punishment the few unworthy persons who from time to time find their way into the service.

No nonsense, and then he jumps right into some math! Can you imagine if our police departments used language like that?

Revenue agents, deputy collectors, and examining officers are expected to use every care in checking up distilleries and to render every assistance to distillery officers in the performance of their duty, and immediately report any incompetence, lack of intelligent effort, or irregularity on the part of any distillery officer, with a view to furthering the purpose of the bureau that there shall be collected for the Government every dollar of revenue due with the least possible annoyance or interruption in the business of the legitimate taxpaying manufacturer.

I like the language, lack of intelligent effort. I will borrow that when I scold people. He then goes into Form 88. Basically then collected data on every aspect of production and knew everything on everyone. It would be wild if we could request some of these records.

It turns out 1912 was a important year and the results of IRS technical assistance were starting to pay off. Increasing the yield of commercial distilleries also made them more competitive against illicit distilling.

American Whiskey by the Numbers – An Unprecedented Look

This post is brought to you by the Houghton Street Foundry,(IG: @houghtonstfoundry) the artisan workshop of the Bostonapothecary. Please share and/or follow to show your support.

No distillery tasting room is complete without the carbonated bottling tools of Bostonapothecary labs. Add the dimension of carbonation to your tasting room experience.

A unique mid century document came to me a few years ago containing the intimate but anonymous production parameters of 42 American whiskey distilleries producing 112 different whiskey mashes (85 Bourbons, 10 rye mashes, and 17 corn mashes). To my knowledge, the document is not known to any spirits scholars.

My plan to explore the document started with a scheme to unmask all the distilleries by tricking the conglomerates into matching their famous straight Bourbon labels to the old productions. I appealed for help, but didn’t get any interest, so it seemed like time to explore it another way. It was also complicated by the fact that these were just mashes and not labels themselves. Straight Bourbons could be picked out, but blends would be very complicated if not possible anymore.

Many brands making come backs have devolved into merely labels detached from the juice that was inside. As we will see when compared, many of the mashes were fairly redundant, featuring only slight variations. Brilliant progressive thinkers like Herman Willkie and Paul Kolachov were making production much more efficient in the name of environmental burden while also producing a great product. Their quest for genuine improvement was a big factor in the consolidation trend.

Distillery tourism is the new trend that may reverse the label detachment phenomenon and producers may be interested in de-consolidating their products back to more uniqueness so we have more places to visit, collect, and obsess over. The market for fine products and tourism make a lot of things newly viable, what we need then is a vision for style.

New players are entering the market that are financed well enough to be the truth seekers we need such as Kevin Plank’s Sagamore spirits. Sadly, they are starting with MGP, but they have picked up Seagram’s alum, Larry Ebersold. No doubt the parameters of gems like the legendary Baltimore Pure rye lie in the document. It shouldn’t be hard to spot the rye-est of all the ryes. Distillery no. 3, a conglomerate, made some brick house ryes, but distillery no. 38 made nothing but rye with one mash being a pure rye malt monster and their other mash being more econo.

To contextualize the document, I have reorganized it into a spread sheet that makes trends and patterns more obvious. I’ll do my normal barely appreciated dot connecting then hopefully some historians that have studied company timelines and have knowledge of the producer’s various labels can chime in and we can start giving probabilities of who is who. There are only two different wheaters and one corn producer using koji so it won’t be too hard to name the obvious. I’m hoping that Colin Spoelman swoops in and cleans up the list really nice.

The document gets specific and tells us the unique production parameters used by each distillery. Many only made Bourbon while others added a corn whiskey or rye and a few made all three. If they added that corn mash, they likely had a proliferation of labels for blends. Some mash bills were reused with different parameters and the spreadsheet lets us see that all comparatively. Most whiskey back then was commodity whiskey as opposed to the new fine market we see now and the document shows producers varying production parameters to make different crus, at least as blending stock, under one roof. This wasn’t the single barrel era yet. Who knows how they allocated production slots when they had multiple mashes in their repertoire. Some mashes were obviously modest while others were grander and some with a grand foundation were distilled to be a little lighter on their feet as supposedly was the trend.

The document was commissioned because fusel oil separation in continuous stills, the so called extractive distillation, was changing whiskey identity markedly. Only six of the forty two distilleries exclusively used batch distillation. Laws limiting distillation proof to imply character are all based on the assumption of batch distillation. A continuous still can be tuned so that its various side streams strip out the heavy character of fusel oil. Producers, no doubt led by Willkie and Kolachov, were also moving to advance fermentations, biological control, to alter much of a whiskey’s character pre distillation and aging (no doubt following the lead of rum, the most progressive spirit). The document was an attempt to mark a golden era of American whiskey before it went too wayward beyond “tradition”. Keep in mind, I may also be over dramatizing things.

For each itemized production, we have their:
•Mash bills, percent corn, rye, wheat, and malt
•Whether it was a sweet or sour mash
•Whether a lactic culture was added
•The percent of backset or stillage used to sour the mash
•The gallons per bushel of grain which implies alcohol concentration for the mash
•Duration of fermentation in hours
•I computed duration in days so we can think in terms of labor shift changes
•Plates on the beer still
•Min and max proof of the stripping run
•I compute the difference to imply how the still is refluxed to come to a relative equilibrium before the run is collected.
•Whether the doubler is a batch charge or continuous.
•Min and max proof of the doubling run
•I again compute the different to extrapolate a little more
•Proof of the final collected distillation
•Entry proof into the barrel.
•I compute the difference because the most grand brick house products will require the least dilution, just like a rum.

Corn is cheaper than other grains and too much corn in a mash bill can leave a rank taste at lower drinking proofs if distilled very low. It tends to be served above 80 proof to contain the flavor. In the era of the document, corn whiskey was still a thing, if not just for blending. Three distilleries exclusively made corn whiskey. One was still using the infamous ultra efficient and therefore cheap koji process developed by Dr. Jokici Takamine in the late 19th century. This is likely a Peoria Illinois producer, but possibly not Hiram Walker. Distillery no. 1 is likely the most heritage of all the corns. They still used batch distillation, though with a few plates, and no refluxing of the stills before they collected the run. Bourbons very high on the corn make me think of bottlings like Dant that I’ve tasted from the 1970’s that kind of sucked.

Higher rye content Bourbons, like Old Grand Dad is famously known to be, start to mark quality. Some whiskeys like example no. 3c were probably quite tasty. Distillery 3 was one of a few big conglomerates and it is interesting to compare their bourbons. Whiskeys 3a and 3b are subtle variations of each other and do not read as grand as 3c in terms of rye content, yet their fermentation times are slightly longer. Were any of these new acquisitions that were likely to be redundant and consolidated?

Speaking of conglomerates, distillery no. 3 is the most apparent, but the similarity of parameters in distilleries no. 5,6, and 7 make it seem like they were all under the direction of a single team. Could that be where Willkie and Kolachov come in?

Only two distilleries made Wheat mashes, and they loved their concept enough to make nothing but. One is Stitzel-Weller and the other is likely Maker’s Mark. Language in the document’s commentary implies that the wheaters are two distinct enterprises. Both distilleries used the same mash bill, the same single plate stripping still concept, similar lack of refluxing, and even the same barrel entry proof. Bill Samuels was known to acquire his recipe and receive assistance from Stitzel-Weller and the data could add conjecture to the extent of the help. My guess is that the more contemporary Maker’s Mark is the wheater that distills at the higher proof.

Malt is an interesting variable in a mash bill and it is thought only to provide assistance for converting starch to fermentable sugars, but it may also be stylistic judging by the varying proportions of its use. Malt is expensive and if a producer went heavy on it, they likely had a good reason. The highest malt content on the board is the 20% from whiskey no. 38b. That was from the rye exclusive producer and was matched with 80% rye which leads me to believe it was the Baltimore Pure Rye [*cough*cough* Sagamore, get on it! and talk to Wondrich about a three chambered still!]. I had been lucky enough to taste a bottle of BPR 1941 and it had a unique and dense maltiness very unlike any Old Overholt I had tasted of the same era. Overholt could possibly be derived in part from the ryes of distillery no. 3. which may be National Distillers (just a guess!).

Malted barley has a much higher diastic power than malted rye so when the malt figure is at the average, it is likely the more economical barley, but if it is as high as 20, it is probably decadently rye. Northern Brewer has started selling different malt extracts and their rye is quite singular. What would be cool to know is if there was a style of Bourbon mash that seemed like it was high on the corn, but was rye plus rye malt (instead of barley) so it really tasted distinctly high rye.

Few producers still made a sweet mash with two producers doing it exclusively. The rule of thumb with sweet mashes is that they can ferment faster and to higher alcohol contents than a sour mash. Distillery no. 2 made a sweet Bourbon mash, corn mash, and rye. Their rye is categorized as sweet but still employed 18% backset. Distillery no. 42 followed suit with two categorized sweet but also featuring 20% backset. The traditional quantity of backset for sour mash is 25% so anything less than that is considered sweet by the industry. Notice the first part of the rule of thumb falls part and distillery no. 2 happens to use decadently long fermentations though the second part holds true and they use a low gallons of water per bushel. Style points for no. 2! [that red three I think is their typo and should be a 13]

The addition of a lactic acid producing bacteria was something that surprised me when I first read the document. Co-fermentation of yeast with an innoculated bacterial culture is something that we think of in rum production, but here it was, thoroughly used in American whiskey and practiced for decades. I have yet to find an old research paper that focuses on it.

When you really get into it, the way they add their lactic culture is also very different than rum. Rum bacteria is all offense and aroma driven while sour mash’s lactic culture is all defense. Many inferior wild yeasts and aroma negative bacteria can not grow in the low pH medium produced by the lactic bacteria. Sour mash yeasts are unique and they used to be called wine-sour yeasts because they were selected for tolerance to soured mashes.

Innoculating with a lactic culture may seem high tech like sour mashers graduated from mere chemical control to full on biological control, to borrow some rum industry phrasing, but they were practicing it since before the 19-teens. They made it like yogurt. A small amount of a rye and malt specialty mash is held at about 120°. This temperature is beyond a yeast’s tolerance, but the lactic bacteria can grow and take hold. It wasn’t too fussy.

The bacteria basically infects the vat and accumulates in every batch to a point where fermentation is impeded and the vats must be chemically sanitized. These days under near complete biological control, some producers have advanced to the point where they have inline spectroscopy monitoring the beer telling them specifically if they need to clean the vats on the 18th, 19th, or 20th batch in the cycle. Too soon would be wasteful. If we get philosophical, we may even say that their involvement goes too deep. The windows for chaos are framed a little too tightly.

The sweet mash producers obviously did not add a lactic culture, but twelve sour mash producers also did not use it in any of their productions. These producers likely have a healthy variation of character during their production cycles and they tended to have smaller lineups such as one mash bill with variations of fermentation duration. I imagine Old Crow lying in this Bourbon philosophical territory somewhere. Its reputation was beyond the state of its production so the label was kept, but its mash bill was consolidated.

Gallons of water per bushel tells us how dilute the beer was and what its potential alcohol was. It also somewhat tells us how grand the aspirations of the ferment were. More water meant a larger mass to absorb the heat of fermentation which would keep the temperature down creating less aroma negative congeners that in the olden days would be a concern for batch distillation. More water also means more capital tied up storing the extra mass of the beer and far more energy used to boil it all in the end, so if you added it, the results had to justify it. Just like rum, progressive producers were migrating to temperature controlled fermentation vats and higher starting gravity fermentations to use less fuel.

There used to be legal minimums governing gallons per bushel (to promote hitting dryness) and even a provision for rum, but who knows where those ideas were by the time the document was commissioned. This relates to the idea of chemical control of a distillery. If you go way back, American excise officers used to actually help distilleries become scientifically competent. We just didn’t know enough about fermentation is those days and without care it was easy to get a fermentation stuck and squander potential alcohol before you distilled. The excise job would be phenomenally easier if all producers were guaranteed to ferment to dryness. The producer would also make more money and have less incentive to cheat.

When fermentation competence is the rule, the reason the excise job gets easier is because you can match potential alcohol from grain purchased to alcohol realized from the still. There will be losses but extrapolations can account for them. The excise officer becomes a stable pencil pusher and not a nosy detective with a flashlight only to find the distiller is incompetent. The scope of the IRS papers that keep turning up surprise a lot of people, but hopefully this explains their philosophy. Many of the excise guys no doubt loved whiskey. The bulletins they put out gave them a proper forum to influence the industry instead of being an annoying backseat driver on the distillery floor. I have written in the past about the public foundations of private spirits companies.

Longer fermentation times typically correlate to fuller flavored beers to distill (and there also used to be legal minimums aimed at helping hit dryness). This lesson is best learned in rum where there is a bigger spread in possibilities. In the document, we see fermentations as short as 52 hours for a corn mash and as long as 120 hours for quite a few others whiskeys.

One thing I did in the spread sheet was to convert the hours to days to look at the durations in terms of human labor cycles. Fermentation times weren’t exactly just carried out until specific congener targets were met, besides the obvious completion of converting sugar to alcohol. They were carried out until someone showed up to do the work of manning the pumps. If we look at distillery no. 27, an infamous wheater producing three variations of the same mash bill, they had a 72 hour fermentation, an 84, and a 96. In terms of days that is 3, 3½, and 4. So the question is, did they start with the objective of producing different styles or did it just happen when a runaway biological process met the rhythm of their labor cycles? Distilleries don’t employ a lot of people and that 84 hour ferment may have happened because he/she simply didn’t get to it yet. New distilleries are starting to encounter human rhythms dictating production practices while large distilleries have overcome aspects of it with automation.

If you know how to read things, the influence of a labor cycle can become a layer of our appreciation. I remember having a beer with a glass blower years ago, and across the room he spied a hand blown multi-globed light fixture. He said, “do you know why that last globe is darker than the others?”, “because he was tired.”

A new era was coming and it represents information not captured in the document (which might not really be true). All sorts of variables could change while producing roughly the same flavor if yeasts were more carefully selected or pitched in different quantities with different pHs plus a lot more options. They either specifically learned from rum, which was further ahead (*cough*cough* Arroyo!), or arrived at a lot of the same conclusions. There was a lot to gain. Producers could arrive at a product cheaper, they could reduce their environmental footprint which was a concern, or they could even make a product taste better.

Bourbon got pretty far without being too fussy about bio technology. Excise officers helped them out and the sour mash process took form without much more science than it took to make yogurt. They also grew and maintained fairly pure strains of wine-sour yeasts without owning microscopes. That was done using hops. Rum didn’t have hops to keep bacteria from their yeast and that is why Arroyo had to be such a thorough bio technologist (rum may have eventually picked up antibiotics). Lack of pressure led to lack of sour mash innovation. Arroyo was painstakingly conducting yeast Olympiads to find rum yeast champions employing large test fermentation arrays while Willkie and Kolachov didn’t hit the same level of science until probably twenty years later.

I’ve actually never looked into the specifics of Bourbon producing stills. I thought that maybe they flirted with fully continuous distillation and reverted back based on pictures I’d seen, but that isn’t exactly the case. The document differentiates between variables in the beer still versus what they label the doubler so it looks like the beer still is a discontinuous charge process while the second distillation is continuous. Multiple beer stills could feed a continuous doubler (but confirming that is still a google away). I could be wrong, I haven’t actually looked.

If a distillery operated a continuous beer still, and they definitely existed capable of digesting grain left in the mash, it would have between 12 and 20 plates. If a still had that many plates, they also likely wouldn’t need a second distillation. The most plates for a beer still in the document is 10 which is distillery no. 24 who exclusively made Bourbon. Mash no. 24b has a significant spread between the minimum and maximum proof so it is likely not continuous. Laws I’m not aware of may have dictated a double distillation scheme.

If their beer stills work the way I think, they had a typical heads and tales cut that was recycled. The plates, disclosed in the document, will somewhat correlate to the flavor passed on to the doubler, but not as much as the minimum and maximum proof of the beer run. Only three distilleries use a different amount of plates across their productions which could imply different entire stills in use or possibly just different columns switched on or off. Both wheaters use a one plate still which could imply a little more collusion.

I computed the difference between the minimum and maximum proof of the beer still run. The idea was so see if they refluxed the stills to bring them to relative equilibrium before collecting the run. A pot still is not at equilibrium and the run has a significant curve when you graph the proof over time so you see a big difference between minimum and maximum. A column still can be operated at relative states of equilibrium flattening out the curve. Collection from a column still can be paused by going full reflux, but the alcohol content in the column will increase. The ability to reflux means that multiple beer stills could be synced up with a continuous doubler even if they didn’t exactly heat at the same rate.

The document does not tell us about the cutting routines or the fraction recycling options the distilleries used. A heads cut from the beer still could be taken and recycled back to the next distillation run just like classic pot still double distillation and the tales cut could be collected in its own receiver instead of being passed on to the continuous doubler.

It would be so cool to see the same data from ten years prior. I suspect the industry was much more susceptible to trend than tradition. They all no doubt read the same research papers and bulletins especially with excise officers ever present and ever helpful. They likely also had consultants and I doubt anyone was too guarded which is how Maker’s Mark could emerge out of Stitzel-Weller without a scandal. I say that all by looking at the data and the industry research papers I’ve read that may have influenced the numbers. I don’t actually know any specific industry anecdotes. I have never particularly paid attention to American whiskey before so there is lots of room to add to or tear apart all my ideas here.

Continuous doublers must have been around for quite a while if so many people had them. There was probably a generation of equipment used right out the gates of prohibition that lasted maybe twenty years then everybody upgrading at the same time possibly as they exited the pressures of World War II.

You would think continuous stills would all be operated very similarly with very tight spreads between the minimum and maximum proof of distillation and quite a few producers had really tight spreads. Yet there is also a lot of variation such as distillery no. 14 distilling handsome seeming Bourbon mashes, but having a significant spread of 42 proof on their doubler relative to only 10 on their 2 plate beer still. Those numbers are very different than distilleries no. 5,6 and 7, which may all be the same conglomerate. The spread on 5,6, and 7 is as tight as the probable margin of error. Distillery no. 9 supposedly starts collecting from their continuous doubler at zero proof which may be possible if they are collecting steam and not allowing the column to come to any state of relative equilibrium before they collect their distillate (excise officer is rolling his eyes). There are some gaps in the data where distilleries did not answer the questions denoted by a “-“. It is hard to say if that zero should be taken at face value, if its an error, or if someone did not understand the question. The questionnaires were actually filled out by excise agents. Distillery no. 2 also operated their continuous doubler with unusually wide spreads. The wheater, no. 16, also did, but I am not confident in those numbers because they are exactly the same as used in their beer still while the second wheater’s, no. 27, are not.

Final distillation proofs and then barrel entry proofs are hard to read into. Classically, econo whiskeys and just plain junk were distilled at higher proofs to make them more palateable. Grander whiskey would be distilled lower, but then there was the trend to lighter on their feet whiskeys. At the same time, and the whole point of the document, was that producers were slowly learning to use their continuous doublers with the ability to easily separate fusel oil and changing American whiskey identity markedly. I bet there was even one infamous Bourbon that set the precedent while everyone watched in amazement. I would not be surprised if Kolachov had anything to do with it and it shouldn’t be hard to figure out what whiskeys had his name on them. All of the rules of thumb were falling apart. A new era of whiskey abstraction was dawning, special effects.

What I’ve barely mentioned so far is that all the data came with a commentary, but they don’t explain or explore pretty much any of the stuff I just presented. Their vantage point was much different. There is also lots of data I’m not showing because it is a bunch of boring congener counts. That data is boring but powerful. Columns could be added to the spread sheet with all the major congeners classes. We could then use econometrics and software like SPSS to find correlations. This would possibly generate statistically significant actionable advice such as increase the fermentation time if you want to increase the X and decrease the Y. We can leave that all for another day.

The authors were concerned with the potential of extractive distillation which is a method of fusel oil separation. Laws stating that distillation could not exceed 160 proof was not guaranteeing anything anymore. They were positing writing into law natural flavor standards for each congener class. The impact of extractive distillation may not have hit whisky yet, but the future comes at you fast. If natural flavor standards had to be created, they needed good numbers representative of tradition while they still were reliable.

The authors also explained a few bits and pieces in the data. The two curious “water-mashes” with no backslopping could make a whiskey lighter because less congeners are recycled by the backslop. They were also using early forms of GCMS and connecting chemical compounds to the infamous hog tracks of some new make spirits

The authors note that the maximum allowable entry proof was raised in 1962 from 110° to 125° yet average entry proof for Bourbon’s was still 109.8°. None of the bourbons were entered at the maximum allowable proof. That makes it hard to understand why the laws bother to change. The commentary section of the document has a table that compares various similar surveys conducted between 1898 and themselves. I have seen a lot of them and none are as comprehensive or have such an extensive table of mashing and distilling parameters.

It has often been stated that whiskies produced today are not as heavy or full bodied as those produced in the old days. To find evidence that would either support or refute this contention, a comparative examination of chemical data from the better known studies on whisky has been made and is shown in Table 7.

The data leads to the conclusion that not much has changed.

Possibly the heavier charring of the barrels resulted in the so-called “heavy whiskies” of the old days.”

It was a lot of fun to reflect upon and finally do something with this cool document which I am intentionally being partially vague about. Hopefully it will launch a few ships, start a few friendships and generate new chapters of American whiskey writing and scholarship.

Notes:

Wild Turkey was an non distiller bottler until the 1970’s and started as a supermarket brand.

Distillery no. 41 is likely Continental Distilling of Pennsylvania based on the 41C mash bill of 37/51/12 which is likely Rittenhouse Rye

Heaven Hill has used a 75/13/12 mash bill so they could be distillery no. 10,15, 18, 21 ,23, 24c, 25, or 30. Basically it is the most popular mash bill. Wild Turkey eventually became a 75/13/12 so they could be descended from one of these producers.

Distilleries 16 and 27 are likely Stitzel-Weller and Maker’s Mark.

Distillery 24 could be Four Roses because they do two different mash bills. Currently one with 75% corn, 20% rye, and 5% malted barley and another one with 60%, 35% rye, and 5% malted barley. The rye percentages could have changed from the days of the document as ideas in malt changed. Four Roses uses five different yeasts! Holy Biological control Batman!

Distillery 19 is likely George Dickel. Their current mash bill is disclosed as 84% corn, 8% rye and 8% malted barely which doesn’t match anybody. The document would consider them a corn mash producer and the only producer of quality doing exclusively corn mashes is no. 19. Dickel was a contemporary plant back then so it is probably not distiller no. 1.

Distiller no. 7 could be the Barton distillery because of the 75/15/10 mash bill that they claim to use today, but don’t forget they may some how be linke to distillery no. 6 because parameters over lap.

Today Maker’s Mark discloses uses the same mash bill as in the document.

Distillery no. 9 is likely Jack Daniels because of the 80/8/12 mash bill. Others used the same mash bill, but no. 9 was the only one that produced exclusively that. I’ll have to check the chemical data and see if there is anything odd that makes it look like its definitely charcoal filtered.

Distillery no. 17 is likely Brown Forman because of the 72/18/10 mash bill, but it looks like that distillery also ran a 74/16/10.

If distillery no. 3 is National Distillers, bourbon 3c could be Old Grand-dad, 65/25/10. These days the Grand-Dad mash bill is disclosed as 63/27/10.

Distillery no. 3 is likely Hiram Walker based on a paper about aging I’ve got where they used samples from three distilleries with proofs of distillation 154 for a rye, 118, and 127 for Bourbons.

If Michters at Bomberger’s distillery was always a pot still distillery, they could likely be distillery no. 41. but at the beginning I thought that was Rittenhouse. Which could mean they are definitely Pennsylvania Rye numbers.

Whiskey Verdigris

A search for something to help a blog reader prompted me to take a trip back through the databases. More and more literature is digitized every year or has its copyright expired.

This paper on Whiskey Verdigris was a fun one for me because I love looks at distillation phenomena that are seldom explored. If you encountered a still puking verdigris as a first time distiller it may be a ‘wtf?, that’s not in the text books!’, but it is a phenomenon understood to be normal by experienced commercial scale distillers. My very first explanation of the phenomenon was back in 2014, A Still Operation Phenomenon Explained.

The paper is from 1937 and the experiments were conducted down in Kentucky from a sample of whiskey verdigris secured for the authors by a former University of Kentucky alum. This is all pre chromatography era so they explore and torture their sample MacGyver style to elucidate what the hell it is and how the hell it got there.

Copper is reactive and distillation is all about concentration so waves of reactive compounds move through the still. The end of a spirits run also has a unique relationship with the beginning of the next as we learned in Demisting and the Spirits Safe. Stuff at the end of the run, distilling primarily with water vapor (but not necessarily water soluble), has a tendency to be sticky. This stuff often gets stuck in the condenser, affixing to the copper, but is liberated by the next run where it is soluble in the very high alcohol content of the heads fraction. Chemical reactions happen with the copper producing a colored patina that takes the name whiskey verdigris though it is chemically different from the classic verdigris of the decorative arts (but no less beautiful!). Another strange phenomenon can also come along depending on how a distillery preps its beer (they usually try to avoid this). If the beer has not been de-gassed and liberated of its CO2, as it heats, it will have a tendency to belch. The liberated CO2 has both a corrosive action and a force that can scour the inside of the still and puke out whiskey verdigris. If you have this going on you may want to figure out how to de-gas your beer because the raw copper revealed can negatively impact your flavor.

The short paper is worth a read. These chemists were brilliant and it is fun to try and keep up with an understanding of what the hell they are doing. Among the many parts of their experiment, they are making whiskey soap and getting to smell isolated fractions that few of us will ever get to experience. Wonderful stuff.

If you have some, either send in a photo or mail me a canning jar of the stuff. I will turn it into paint and create a neo-pointalist self portrait.

As the concentration of alcohol falls in the doubler a white, insoluble, fatlike material appears in the trial box. Although most of this goes back into the singling tank, some collects in the condenser and is partially dissolved and washed out by the higher alcoholic content of the next distillation. This appears in the heads or foreshots of the next distillation and is colored a distinct green. This part of the insoluble material goes directly into the whisky well and dissolves in the strong alcohol present. Thus a part of the original volatile fatty material collects in the singling tank, and part finds its way into the whisky. The trade calls this material “verdigris” which is an unfortunate name since it has no connection with the verdigris of commerce.

 

The amount of this material is small in comparison to the volume of alcohol produced. Probably 250 grams per 30,000 liters of high wines would be a fair approximation, although no exact figures are available and would be very difficult to obtain.

 

UNSAPONIFIABLE MATTER. The ether extracts of the soap solutions upon evaporation yielded 1.4 grams of a viscous oil having somewhat the odor of corn.

 

The green solid when leached with hot alcohol was dissolved, leaving a brown solid. Upon filtering and cooling, the alcohol solution deposited green crystals; hence the palmitic acid is considered to be held as a cupric salt.

 

The higher fatty acids and their derivatives found in whisky verdigris without doubt originate mainly in the corn (3) which makes up from 60 to 89 per cent of the total grain used in making Bourbon whisky from which the sample was obtained. The corn oil alone does not offer an explanation of the presence of laurate and caprate esters, although Hilger (6) reported the free acids to be present in fusel oil. The occurrence of the various fatty acids and their derivatives in the beer is easily understood, but their presence in the distillate is more difficult to explain. Although it is known that the higher fatty acids are volatile in steam, or at least volatile in steam containing the vapors of more volatile acids, it must be remembered that this is not purely a steam distillation.

 

It is possible that the acids distill and cling to the copper condenser, and that partial salt formation (11) and esterification take place there. The majority of the esters are probably formed in the beer, and many other possibilities are obvious although none appears to explain satisfactorily the absence of stearic acid or its derivatives. Although this acid has been reported in fusel oil (6), the writers were unable to find any indication of its presence in whisky verdigris.

 

Whisky verdigris has a strong odor of green whisky and may be said to be yeasty: although none of the substances mentioned by Hochwalt and others (7) were found, their hydrogenation process may owe part of its effectiveness to the reduction of the unsaturated derivatives which otherwise become rancid.

These two photos come from rum distiller James Copeland christening a new still.

An accumulation of beautiful whiskey verdigris.

Insoluble flecks collected in a low wines receiver.

Whiskey verdigris can even end up as a precipitate in the tales fraction.

Insoluble flecks can be collected in cheese cloth suspected over the low wines receiver.

The last four photos were courtesy the wonderful Kings County Distillery which primarily produces a bourbon.

This last photo is from the Auchentoshan distillery in Scotland. Courtesy an astute reader with an eye that doesn’t miss much.

Feel free to write in and add to the photos. They can be attributed or submitted anonymously with the type of spirit distilled.