For Sale: Champagne Bottle Manifold ($100USD)

Also view the more advanced keg to bottle liquid transfer version here.

December 8th, 2012

PATENT PENDING

SAFETY DISCLAIMER: USE THIS HIGH PRESSURE PNEUMATICS PRODUCT AT YOUR OWN RISK. WE ARE NOT LIABLE FOR ANY INJURY INCURRED BY THE USE OF OUR PRODUCT. ALWAYS WEAR SAFETY GOGGLES WHEN USING THE MANIFOLD. USE ONLY BOTTLES RATED FOR THE PRESSURE YOUR REGULATOR IS SET AT. DO NOT SET YOUR REGULATOR HIGHER THAN 60 PSI OR RISK WILL ESCALATE. BEWARE OF OUR SEDUCTIVE DESIGN AND MARKETING, THIS PRODUCT IS DANGEROUS AND SHOULD ONLY BE USED BY THOSE THAT FULLY UNDERSTAND THE RISKS. DO YOUR DUE DILIGENCE BEFORE YOU OPERATE THIS PRODUCT.

Please re-read the above disclaimer if you missed it.

Bostonapothecary is proud to introduce the holy grail of carbonation equipment, the Champagne bottle manifold.




The manifold is a conduit for connecting a gas supply to a Champagne bottle. But why would you want to do that?

• The manifold allow wine lovers to add counter pressure to their sparkling wines which preserves the bubbles when stored over extended periods.

• Beer brewers can add precise weights of dissolved CO² to beers which is useful when bottling for competitions or exploring different carbonation levels to have every beer show at its best.

• High end beverage programs can carbonate their products in aesthetically pleasing Champagne bottles to dissolved CO² levels as high as 7 g/L.

• Sensory scientists or those involved in new product development will find the manifold indispensable for economically achieving precision levels of dissolved gas for tasting panels.

The manifold features a durable plastic collar that securely clips on to the neck of a Champagne bottle (375 mL, 750 mL, and most 1500 mL). A food safe seal which contains a check valve interacts with the mouth of the bottle. A threaded plug engages the collar and maintains a seal under working pressures as high as 65 PSI. The manifold features industry standard stainless steel Cornelius quick disconnects which are common standards to most home brewers and beverage programs that have adopted cocktail-on-tap equipment. Cornelius quick disconnects contain a seal designed to maintain pressure for extended periods of time. All parts on the manifold are durable but also replaceable to ensure a long life span for your investment.

To be walked through carbonation, counter pressure, and de-aeration please take a look at the manual.

Besides the manifold itself, what new concepts make working with carbonation easier?

Many people think of carbonation in terms of pressure & temperature, and even volumes but carbonation can also be thought of in simpler terms of grams per liter (g/L) of dissolved gas. When we consider the weight of the dissolved CO², we can measure carbonation with equipment as simple as a commercial kitchen scale.

Cold bottles are simply filled with cold liquid, the manifold is attached and initially connected to the gas supply to fill the head space then disconnected (the head space can often hold a few grams of compressed gas), we place the bottle on the kitchen scale and zero. After zeroing, any weight that is added will reflect what is dissolved in the liquid. The gas supply can then be re-attached and CO² will be absorbed by the liquid as the bottle is agitated. The bottle can be periodically detached then re-weighed to see how much CO² has been dissolved in the liquid. Agitating the bottle facilitates the dissolving of the gas; basically you shake the bottle while it is under pressure and connected to the gas supply.

When the gas in the head space is finally released by unscrewing the manifold, oxygen which was dissolved in the liquid is also purged via a phenomenon called reflux de-aeration which is governed by Dalton’s gas law.

To store the product with a desired carbonation level, head space has to be accounted for. Bottles either have to be over carbonated to account for the gas needed to fill the head space if a bottle cap is to be affixed or the bottles will need to be topped up with liquid.

If the task is simply to pressure open sparkling wines, counter pressure of up to 60 PSI, which is more than enough for 5°C chilled Champagne, can be applied near instantaneously. According to researcher Dr. Steve Smith, a lecturer on wine studies at Coventry University, the pressure within a Champagne bottle (filled with 12 g/L of dissolved CO²) can be calculated with the formula: P = T/4.5 + 1 where P is the pressure in atmospheres and T is the temperature in Celsius. At 5°C, the pressure in the bottle is 2.111 atmospheres which converts to approx. 31 PSI.

• Beer brewers work with dissolved CO² levels in and around 4-5.5 g/L which is easy to achieve.

• Soda makers and those producing carbonated cocktails can achieve highly carbonated beverages with dissolved CO² levels as high as 7 g/L in just a few minutes of work per bottle.

• New product developers can easily create a range of dissolve gas levels for usage in tasting panels and bench trials.

Once a bottle has taken on a desired measure of CO² it will have to rest for a while and “bond” with the bottle before the manifold can be removed and a 29 mm crown cap affixed or spring based Champagne stopper attached. Releasing the manifold too quickly can cause foaming and loss of carbonation. The more the dissolved CO², the longer the time needed to bond. For soda makers or those requiring very high levels of carbonation, we recommend using numerous manifolds in a series so that active time spent carbonating can be as continuous as possible.

What are the advantage over other systems? The Bostonapothecary Champagne Bottle Manifold has the two fold advantage over competitors in that it is both more effective and more economical than any other product on the market.

Competing direct bottle manifolds exist for plastic soda bottles but none in my research held a seal as well. Soda bottles also cannot compete with the aesthetics of glass Champagne bottles. Fitting a Champagne bottle gives the manifold versatility because it can both carbonate, de-aerate or simply apply counter pressure. Others systems rely on going from keg to bottle and besides the cost and large footprint of the equipment, they lack the precision, the upward range of CO² levels, and some require a significant amount of down time under high pressure operation for the bottle to bond with the gas. Many large volume, high pressure users of the legendary Melvico counter pressure bottler needed an array of the machines to minimize down time and keep active bottling as continuous as possible which greatly magnified the expense. The Bostonapothecary Manifold requires active time agitating the bottle to absorb gas, but saves significant time by a lack of intensive setup, break down, and cleaning that keg to bottle systems require.

SAFETY DISCLAIMER: USE THIS HIGH PRESSURE PNEUMATICS PRODUCT AT YOUR OWN RISK. WE ARE NOT LIABLE FOR ANY INJURY INCURRED BY THE USE OF OUR PRODUCT. ALWAYS WEAR SAFETY GOGGLES WHEN USING THE MANIFOLD. USE ONLY BOTTLES RATED FOR THE PRESSURE YOUR REGULATOR IS SET AT. DO NOT SET YOUR REGULATOR HIGHER THAN 60 PSI OR RISK WILL ESCALATE. BEWARE OF OUR SEDUCTIVE DESIGN AND MARKETING, THIS PRODUCT IS DANGEROUS AND SHOULD ONLY BE USED BY THOSE THAT FULLY UNDERSTAND THE RISKS. DO YOUR DUE DILIGENCE BEFORE YOU OPERATE THIS PRODUCT.




Additional information on safety: I have repeatedly tested this product and never had a bottle failure. Champagne bottles are designed to withstand huge amounts of pressure. The best Champagnes have 12 g/L of dissolved gas and can be under 80 PSI of pressure at 20°C (68°F). I imagine many bottles are even shipped on hot days where the pressure must get well over 100 PSI, therefore operating at 60 PSI is less than half the maximum pressure (using Dr. Smith’s formula, if true Champagne is stored outside or in a delivery truck on a 100°F day the pressure in the bottle is 139 PSI). Champagne bottles are heavier than Prosecco or Cava bottles because Champagne contains more dissolved gas. In my research I could not find statistics on maximum pressure before bottle failure. All information on liability only mentions getting hit in the eye with a cork which is also a risk with the manifold so safety glasses should always be worn. Room temperature Champagne bottles have been known to fall to the floor at the hands of outdoor caterers on summer days in Phoenix Arizona (139 PSI!). Sometimes the bottles survive and to my knowledge the caterer always survives. It has even been explained to me by no official source that bottles are designed to fail at the punt. I encourage all opinions of the product’s safety to be expressed in the comments.