For Sale: Counter Pressure Keg-to-Champagne Bottler ($225USD)

Follow @b_apothecary




Bostonapothecary is proud to introduce a next generation counter pressure bottler inspired by the infamous champagne bottle manifold. The counter pressure bottler attaches to champagne bottles with the same collar system as the original manifold but also includes a down tube and side port with a second Cornelius fitting for venting or pressurizing. The down tube can also be removed and a check valve inserted to revert the bottling head back to the same functionality as the original design for in-bottle carbonating, reflux de-aeration, or counter pressure to preserve sparkling products.

Counter pressure bottling is a fairly advanced procedure and assumes users are familiar with carbonating in Cornelius kegs. There is not much hand holding here so this product is designed to fulfill the dreams of people who pretty much already know what they want to do and how it will work. This product fills a giant hole in the market. Cheap versions, which don’t handle pressure levels beyond beer (and require two man operation) are available for $70 and then nothing worth a damn is available until $10,000. No other product is available that can give you full control at the smallest possible scales. Though slightly technical, counter pressure bottling is safe and liquid is typical only transferred at under 40 PSI which is a small fraction of the working pressure of Champagne bottles. Transfer pressure, because liquid is only being moved rather than forced into solution, is much lower than the pressures used for in bottle carbonation of the original Champagne bottle manifold and is thus a safer procedure.

setThe down tube has been designed as a standard soda keg down tube to keep all the parts familiar. The accessory check valve (included) is from a Guiness type keg coupler so it is tried and true as well as easily replaceable. The check valve slides comfortably into the specially designed food safe seal which engages the bottle. The functionality of going from down tube for liquid transfer to check valve for various non transfer tasks means the tool can be used around the clock and helps justify owning multiple units. Such versatility is not a feature of any competing product at any price range.

optionsGas can be bled from the bottles with a “key” which is best done with a Cornelius gas quick release fitting with a pressure gauge and bleeder valve (pictured above). This key is not included with purchase but can be acquired affordably from my favorite supplier, the Chicompany. Champagne bottles, such as magnums, can even be turned into mini kegs and a hose can be placed over the down tube to reach the bottom of the bottle. Gas can then be inputted into the side port to move liquid up the hose instead of down. The key can also be used to measure the internal pressure of a keg and when paired with the temperature, can imply carbonation level (a common brewers technique!).

keyinstalledEverything was designed with cleanup in mind which is another major strength over competing designs. The Cornelius fittings hold a seal when only thumb tight so disassembly can be done without tools to maximize productivity. The Cornelius fittings have also been proven to hold a seal for months on end which is the reason for using a second Cornelius post instead of integrating a bleeder valve (yes, I systematically explored and tested every option). As opposed to the bulky, large square footage, standing clamp designs of competitors, the small size and portability of the collar design allows all parts to constantly be dunked in sanitizer for cleaning (parts should never be dish washed at high temp because high heat will weaken the seal of the embedded fittings).

The bottling head features unique over-molding of stainless steel 19/32 fittings for anchoring and an uncompromising seal. This complicated production technique, typically found only in very expensive medical devices, was made possible by developing a new laser cut acrylic mold box & plastic silicon die technique (that I’m very proud of, woohoo!).

molddyes

Production is currently still rather bespoke and all sales are being reinvested into the project to upgrade the designs and manufacturing techniques to take full advantage of CAD, 3D printing & CNC machining (there is finally a legit engineer on the team!). Until further notice, purchasers will be part of an early adopters / patrons of the arts program and entitled to trade in their units towards new versions at the expense of shipping and other greatly minimized expenses (manufacturing techniques allow reuse of the costly stainless fittings). Early adopters will also get the benefit of small amounts of consulting which is basically the ability to constantly pick my brain about product usage and potential applications as well as recipe development.

The design features many advantages over competitors and the number one is portability and the potential to be used 24/7 for a variety of tasks followed by affordability. Counter pressure bottling requires significant amounts of inactive time (due to physics) so it is not exactly the fastest process. The affordability of the design allows users to own multiple heads for the price of a one head system from competitors. This allows users to purchase more heads at their own pace to reduce inactive bottling time. As one bottle is coming to equilibrium and “bonding” so the manifold can be removed without detrimental foaming, another bottle can be filled and maybe yet another can be capped.

Another unique feature is the usage of only Cornelius gas fittings instead of both gas & liquid fittings. Liquid can run through the gas quick release so what this means is the same input at the top of the bottling head can be used to both pressurize the bottle, bringing it up to the same pressure as the keg (as well as flush it using the key), and then be used for the liquid line. The liquid jumper cable going from the keg to the manifold will have a liquid disconnect on the keg side but a gas disconnect on the manifold side. This breaking of the rules means the bottler requires less fittings to function and the force to attach the main fitting presses straight downward over the center of the bottle so as not to stress the seal.

With enough early adopters, new tools will be introduced such as a collar to hold 25 mm beer & soda bottles. Working prototypes already exist but need to be scaled upwards to safe, consistent, mechanically precise, and economically viable production.

Distant projects are proposed for affordable but limited production runs of equipment for bottling carbonated water in old fashioned soda siphons. Also a flexible bottling plant has been conceived for eco-hotels and other programs in far flung areas who need bottling heads that can handle the assortment of miscellaneous bottles recycled in their area.

PATENT PENDING

SAFETY DISCLAIMER: USE THIS HIGH PRESSURE PNEUMATICS PRODUCT AT YOUR OWN RISK. WE ARE NOT LIABLE FOR ANY INJURY INCURRED BY THE USE OF OUR PRODUCT. ALWAYS WEAR SAFETY GOGGLES WHEN USING THE MANIFOLD. USE ONLY BOTTLES RATED FOR THE PRESSURE YOUR REGULATOR IS SET AT. DO NOT SET YOUR REGULATOR HIGHER THAN 60 PSI OR RISK WILL ESCALATE. BEWARE OF OUR SEDUCTIVE DESIGN AND MARKETING, THIS PRODUCT IS DANGEROUS AND SHOULD ONLY BE USED BY THOSE THAT FULLY UNDERSTAND THE RISKS. DO YOUR DUE DILIGENCE BEFORE YOU OPERATE THIS PRODUCT.




Follow @b_apothecary

Six New Distillation Papers From The IRS

Unfortunately I only have these as paper copies and cannot scan them as yet.

1941 REPORT ON WHISKEY AND RUM
Valaer, Peter
J. Association of Official Agricultural Chemists (1941), Vol. 24, No. 2, pp.224-231

This paper turned out to be about a new method of determining tannin content for analysts and isn’t too important these days

1937 ACID CONTENT OF WHISKEY
Schicktanz, S.T. and Etienne, Arthur D.
J. Industrial and Engineering Chemistry (1937), Vol. 29, No. 2, pp. 157-159

This paper looks at how the pH of whisky taken by an electrode can be biased by the alcohol content and is still somewhat relevant today. This is another paper about methodologies for analysts.

1945 CARAMEL AND OTHER ARTIFICIAL COLORING MATTER IN ALCOHOLIC LIQUORS
Valaer, Peter
J. AOAC (1945), Vol. 28, No. 3, pp. 467-470

This paper was a new methodology for detecting caramel which can either be lawfully used or as an adulterant. The method was developed as a collaborative effort and was rigorously tested and commented on by numerous analysts across the country.

1956 REPORT ON METHANOL IN DISTILLED SPIRITS
Mathers, Alex P.
J. AOAC (1956), Vol. 39, No. 3, pp. 737-738

This is very brief and is just a comment on new methods for measuring methanol which is tricky due to its similar volatility to ethanol. The paper requests more trials with collaborators.

1956 LABORATORY CARBONATION OF WINE
Etienne, Arthur D. and Mathers, A. P.
J. AOAC (1956)
This interesting paper develops a means of investigating small levels of carbonation that can be left in wines categorized as still as opposed to sparking. This is important because sparkling wines were taxed at a higher rate at the time. The authors built an apparatus similar to my champagne bottle manifold and use a laboratory shaker to agitate the bottles which is similar to my hand shaking method in effect. To measure carbonation they don’t rely on a gauge but rather build a mercury manometer as a more reliable means of measuring small amounts of pressure. This is apparently why pressure can be measured in cmhg or centimeter of mercury as well as PSI or BAR.

1968 ANALYTICAL PROFILE OF CISTERN ROOM WHISKIES
Schoeneman, Robert L. and Dyer, Randolph H.
J. AOAC (1967), Vol. 51, No. 5, pp. 937-987

This extensive paper is pretty much a blockbuster and I definitely need to create a scanning. Amazing data I’ve never seen is collected from 85 whiskeys taken from 42 distilleries. No first names are given, even still, the most exciting parts are the tables that report the grain bill, fermentation process (sweet or sour mash), lactic culture added, spent beer used %, gallon / bushel beer yield, fermentation hours, details of the beer still and the doubler, the distillation proof, and the proof of entry into the barrel.

A particularly cool part are the comments from the author on previous studies of the same type and whether whiskeys then (1968) where like those of 1898 studied by Crampton & Tolman. The paper also features a spectacular bibliography with entries I’ve never seen.